Optimal. Leaf size=33 \[ \frac {3-e^2+x+(4+x)^2}{2-\frac {9}{3+\frac {1}{4} \left (-9+x^2\right )}} \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 34, normalized size of antiderivative = 1.03, number of steps used = 5, number of rules used = 4, integrand size = 46, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.087, Rules used = {6, 28, 1814, 1586} \begin {gather*} \frac {x^2}{2}-\frac {9 \left (9 x-e^2+34\right )}{15-x^2}+\frac {9 x}{2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 28
Rule 1586
Rule 1814
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-405+\left (-774+36 e^2\right ) x-432 x^2-60 x^3+9 x^4+2 x^5}{450-60 x^2+2 x^4} \, dx\\ &=2 \int \frac {-405+\left (-774+36 e^2\right ) x-432 x^2-60 x^3+9 x^4+2 x^5}{\left (-30+2 x^2\right )^2} \, dx\\ &=-\frac {9 \left (34-e^2+9 x\right )}{15-x^2}+\frac {1}{30} \int \frac {-4050-900 x+270 x^2+60 x^3}{-30+2 x^2} \, dx\\ &=-\frac {9 \left (34-e^2+9 x\right )}{15-x^2}+\frac {1}{30} \int (135+30 x) \, dx\\ &=\frac {9 x}{2}+\frac {x^2}{2}-\frac {9 \left (34-e^2+9 x\right )}{15-x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 28, normalized size = 0.85 \begin {gather*} \frac {1}{2} \left (9 x+x^2-\frac {18 \left (-34+e^2-9 x\right )}{-15+x^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.72, size = 31, normalized size = 0.94 \begin {gather*} \frac {x^{4} + 9 \, x^{3} - 15 \, x^{2} + 27 \, x - 18 \, e^{2} + 612}{2 \, {\left (x^{2} - 15\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.38, size = 27, normalized size = 0.82 \begin {gather*} \frac {1}{2} \, x^{2} + \frac {9}{2} \, x + \frac {9 \, {\left (9 \, x - e^{2} + 34\right )}}{x^{2} - 15} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 27, normalized size = 0.82
method | result | size |
risch | \(\frac {x^{2}}{2}+\frac {9 x}{2}+\frac {81 x +306-9 \,{\mathrm e}^{2}}{x^{2}-15}\) | \(27\) |
default | \(\frac {x^{2}}{2}+\frac {9 x}{2}+\frac {81 x +306-9 \,{\mathrm e}^{2}}{x^{2}-15}\) | \(28\) |
norman | \(\frac {\frac {27 x}{2}+\frac {9 x^{3}}{2}+\frac {x^{4}}{2}+\frac {387}{2}-9 \,{\mathrm e}^{2}}{x^{2}-15}\) | \(28\) |
gosper | \(-\frac {-x^{4}-9 x^{3}+18 \,{\mathrm e}^{2}-27 x -387}{2 \left (x^{2}-15\right )}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 27, normalized size = 0.82 \begin {gather*} \frac {1}{2} \, x^{2} + \frac {9}{2} \, x + \frac {9 \, {\left (9 \, x - e^{2} + 34\right )}}{x^{2} - 15} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 26, normalized size = 0.79 \begin {gather*} \frac {9\,x}{2}+\frac {x^2}{2}+\frac {81\,x-9\,{\mathrm {e}}^2+306}{x^2-15} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 24, normalized size = 0.73 \begin {gather*} \frac {x^{2}}{2} + \frac {9 x}{2} + \frac {81 x - 9 e^{2} + 306}{x^{2} - 15} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________