3.1.20 e2exx(26x+6x26x3+3x4x5+ex(4+12x12x2+4x32x4+2x5))6+18x18x2+6x3dx

Optimal. Leaf size=32 13(2+12e2exx(2+x4(1+x)2))

________________________________________________________________________________________

Rubi [F]  time = 4.20, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} e2exx(26x+6x26x3+3x4x5+ex(4+12x12x2+4x32x4+2x5))6+18x18x2+6x3dx

Verification is not applicable to the result.

[In]

Int[(E^(2*E^x - x)*(2 - 6*x + 6*x^2 - 6*x^3 + 3*x^4 - x^5 + E^x*(-4 + 12*x - 12*x^2 + 4*x^3 - 2*x^4 + 2*x^5)))
/(-6 + 18*x - 18*x^2 + 6*x^3),x]

[Out]

E^(2*E^x - x)/2 + (2*ExpIntegralEi[2*E^x])/3 - Defer[Int][E^(2*E^x - x)/(-1 + x)^3, x]/3 + Defer[Int][E^(2*E^x
)/(-1 + x)^2, x]/3 - (5*Defer[Int][E^(2*E^x - x)/(-1 + x)^2, x])/6 + (4*Defer[Int][E^(2*E^x)/(-1 + x), x])/3 -
 (2*Defer[Int][E^(2*E^x - x)/(-1 + x), x])/3 + (2*Defer[Int][E^(2*E^x)*x, x])/3 + Defer[Int][E^(2*E^x)*x^2, x]
/3 - Defer[Int][E^(2*E^x - x)*x^2, x]/6

Rubi steps

integral=(e2exx3(1+x)3e2exxx(1+x)3+e2exxx2(1+x)3e2exxx3(1+x)3+e2exxx42(1+x)3e2exxx56(1+x)3+e2ex(24x+2x2+x4)3(1+x)2)dx=(16e2exxx5(1+x)3dx)+13e2exx(1+x)3dx+13e2ex(24x+2x2+x4)(1+x)2dx+12e2exxx4(1+x)3dxe2exxx(1+x)3dx+e2exxx2(1+x)3dxe2exxx3(1+x)3dx=(16(6e2exx+e2exx(1+x)3+5e2exx(1+x)2+10e2exx1+x+3e2exxx+e2exxx2)dx)+13e2exx(1+x)3dx+13(5e2ex+e2ex(1+x)2+4e2ex1+x+2e2exx+e2exx2)dx+12(3e2exx+e2exx(1+x)3+4e2exx(1+x)2+6e2exx1+x+e2exxx)dx(e2exx(1+x)3+e2exx(1+x)2)dx+(e2exx(1+x)3+2e2exx(1+x)2+e2exx1+x)dx(e2exx+e2exx(1+x)3+3e2exx(1+x)2+3e2exx1+x)dx=(16e2exx(1+x)3dx)16e2exxx2dx+13e2exx(1+x)3dx+13e2ex(1+x)2dx+13e2exx2dx+12e2exx(1+x)3dx+23e2exxdx56e2exx(1+x)2dx+43e2ex1+xdx+32e2exxdx+53e2exdx53e2exx1+xdx+2(2e2exx(1+x)2dx)3e2exx(1+x)2dx2e2exxdxe2exx(1+x)3dxe2exx(1+x)2dx+e2exx1+xdx=(16e2exx(1+x)3dx)16e2exxx2dx+13e2exx(1+x)3dx+13e2ex(1+x)2dx+13e2exx2dx+12e2exx(1+x)3dx+23e2exxdx56e2exx(1+x)2dx+43e2ex1+xdx+32Subst(e2xx2dx,x,ex)53e2exx1+xdx+53Subst(e2xxdx,x,ex)+2(2e2exx(1+x)2dx)3e2exx(1+x)2dxe2exx(1+x)3dxe2exx(1+x)2dx+e2exx1+xdx2Subst(e2xx2dx,x,ex)=32e2exx+5Ei(2ex)316e2exx(1+x)3dx16e2exxx2dx+13e2exx(1+x)3dx+13e2ex(1+x)2dx+13e2exx2dx+12e2exx(1+x)3dx+23e2exxdx56e2exx(1+x)2dx+43e2ex1+xdx53e2exx1+xdx+2(2e2exx(1+x)2dx)2(e2exx+2Subst(e2xxdx,x,ex))3e2exx(1+x)2dx+3Subst(e2xxdx,x,ex)e2exx(1+x)3dxe2exx(1+x)2dx+e2exx1+xdx=32e2exx+14Ei(2ex)32(e2exx+2Ei(2ex))16e2exx(1+x)3dx16e2exxx2dx+13e2exx(1+x)3dx+13e2ex(1+x)2dx+13e2exx2dx+12e2exx(1+x)3dx+23e2exxdx56e2exx(1+x)2dx+43e2ex1+xdx53e2exx1+xdx+2(2e2exx(1+x)2dx)3e2exx(1+x)2dxe2exx(1+x)3dxe2exx(1+x)2dx+e2exx1+xdx

________________________________________________________________________________________

Mathematica [A]  time = 1.94, size = 35, normalized size = 1.09 16e2exx(5+1(1+x)2+41+x+2x+x2)

Antiderivative was successfully verified.

[In]

Integrate[(E^(2*E^x - x)*(2 - 6*x + 6*x^2 - 6*x^3 + 3*x^4 - x^5 + E^x*(-4 + 12*x - 12*x^2 + 4*x^3 - 2*x^4 + 2*
x^5)))/(-6 + 18*x - 18*x^2 + 6*x^3),x]

[Out]

(E^(2*E^x - x)*(5 + (-1 + x)^(-2) + 4/(-1 + x) + 2*x + x^2))/6

________________________________________________________________________________________

fricas [A]  time = 0.68, size = 34, normalized size = 1.06 (x4+2x24x+2)e(x+2ex)6(x22x+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^5-2*x^4+4*x^3-12*x^2+12*x-4)*exp(x)-x^5+3*x^4-6*x^3+6*x^2-6*x+2)*exp(2*exp(x)-x)/(6*x^3-18*x^2
+18*x-6),x, algorithm="fricas")

[Out]

1/6*(x^4 + 2*x^2 - 4*x + 2)*e^(-x + 2*e^x)/(x^2 - 2*x + 1)

________________________________________________________________________________________

giac [B]  time = 0.49, size = 53, normalized size = 1.66 x4e(2ex)+2x2e(2ex)4xe(2ex)+2e(2ex)6(x2ex2xex+ex)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^5-2*x^4+4*x^3-12*x^2+12*x-4)*exp(x)-x^5+3*x^4-6*x^3+6*x^2-6*x+2)*exp(2*exp(x)-x)/(6*x^3-18*x^2
+18*x-6),x, algorithm="giac")

[Out]

1/6*(x^4*e^(2*e^x) + 2*x^2*e^(2*e^x) - 4*x*e^(2*e^x) + 2*e^(2*e^x))/(x^2*e^x - 2*x*e^x + e^x)

________________________________________________________________________________________

maple [A]  time = 0.08, size = 30, normalized size = 0.94




method result size



risch (x4+2x24x+2)e2exx6(x1)2 30
norman 2xe2exx3+x2e2exx3+x4e2exx6+e2exx3(x1)2 59



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((2*x^5-2*x^4+4*x^3-12*x^2+12*x-4)*exp(x)-x^5+3*x^4-6*x^3+6*x^2-6*x+2)*exp(2*exp(x)-x)/(6*x^3-18*x^2+18*x-
6),x,method=_RETURNVERBOSE)

[Out]

1/6*(x^4+2*x^2-4*x+2)/(x-1)^2*exp(2*exp(x)-x)

________________________________________________________________________________________

maxima [A]  time = 0.54, size = 34, normalized size = 1.06 (x4+2x24x+2)e(x+2ex)6(x22x+1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^5-2*x^4+4*x^3-12*x^2+12*x-4)*exp(x)-x^5+3*x^4-6*x^3+6*x^2-6*x+2)*exp(2*exp(x)-x)/(6*x^3-18*x^2
+18*x-6),x, algorithm="maxima")

[Out]

1/6*(x^4 + 2*x^2 - 4*x + 2)*e^(-x + 2*e^x)/(x^2 - 2*x + 1)

________________________________________________________________________________________

mupad [B]  time = 0.22, size = 35, normalized size = 1.09 e2exx(x46+x232x3+13)x22x+1

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(2*exp(x) - x)*(exp(x)*(12*x - 12*x^2 + 4*x^3 - 2*x^4 + 2*x^5 - 4) - 6*x + 6*x^2 - 6*x^3 + 3*x^4 - x^5
 + 2))/(18*x - 18*x^2 + 6*x^3 - 6),x)

[Out]

(exp(2*exp(x) - x)*(x^2/3 - (2*x)/3 + x^4/6 + 1/3))/(x^2 - 2*x + 1)

________________________________________________________________________________________

sympy [A]  time = 0.21, size = 31, normalized size = 0.97 (x4+2x24x+2)ex+2ex6x212x+6

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x**5-2*x**4+4*x**3-12*x**2+12*x-4)*exp(x)-x**5+3*x**4-6*x**3+6*x**2-6*x+2)*exp(2*exp(x)-x)/(6*x*
*3-18*x**2+18*x-6),x)

[Out]

(x**4 + 2*x**2 - 4*x + 2)*exp(-x + 2*exp(x))/(6*x**2 - 12*x + 6)

________________________________________________________________________________________