Optimal. Leaf size=22 \[ -2+\frac {4 e^x x}{(x+\log (x))^2 \log ^2\left (9 x^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 2.65, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-16 e^x x-16 e^x \log (x)+\left (e^x \left (-8-4 x+4 x^2\right )+e^x (4+4 x) \log (x)\right ) \log \left (9 x^2\right )}{\left (x^3+3 x^2 \log (x)+3 x \log ^2(x)+\log ^3(x)\right ) \log ^3\left (9 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 e^x \left (-4 x+\left (-2-x+x^2\right ) \log \left (9 x^2\right )+\log (x) \left (-4+(1+x) \log \left (9 x^2\right )\right )\right )}{(x+\log (x))^3 \log ^3\left (9 x^2\right )} \, dx\\ &=4 \int \frac {e^x \left (-4 x+\left (-2-x+x^2\right ) \log \left (9 x^2\right )+\log (x) \left (-4+(1+x) \log \left (9 x^2\right )\right )\right )}{(x+\log (x))^3 \log ^3\left (9 x^2\right )} \, dx\\ &=4 \int \left (-\frac {4 e^x}{(x+\log (x))^2 \log ^3\left (9 x^2\right )}+\frac {e^x (1+x) (-2+x+\log (x))}{(x+\log (x))^3 \log ^2\left (9 x^2\right )}\right ) \, dx\\ &=4 \int \frac {e^x (1+x) (-2+x+\log (x))}{(x+\log (x))^3 \log ^2\left (9 x^2\right )} \, dx-16 \int \frac {e^x}{(x+\log (x))^2 \log ^3\left (9 x^2\right )} \, dx\\ &=4 \int \left (\frac {e^x (-2+x+\log (x))}{(x+\log (x))^3 \log ^2\left (9 x^2\right )}+\frac {e^x x (-2+x+\log (x))}{(x+\log (x))^3 \log ^2\left (9 x^2\right )}\right ) \, dx-16 \int \frac {e^x}{(x+\log (x))^2 \log ^3\left (9 x^2\right )} \, dx\\ &=4 \int \frac {e^x (-2+x+\log (x))}{(x+\log (x))^3 \log ^2\left (9 x^2\right )} \, dx+4 \int \frac {e^x x (-2+x+\log (x))}{(x+\log (x))^3 \log ^2\left (9 x^2\right )} \, dx-16 \int \frac {e^x}{(x+\log (x))^2 \log ^3\left (9 x^2\right )} \, dx\\ &=4 \int \left (-\frac {2 e^x}{(x+\log (x))^3 \log ^2\left (9 x^2\right )}+\frac {e^x x}{(x+\log (x))^3 \log ^2\left (9 x^2\right )}+\frac {e^x \log (x)}{(x+\log (x))^3 \log ^2\left (9 x^2\right )}\right ) \, dx+4 \int \left (-\frac {2 e^x x}{(x+\log (x))^3 \log ^2\left (9 x^2\right )}+\frac {e^x x^2}{(x+\log (x))^3 \log ^2\left (9 x^2\right )}+\frac {e^x x \log (x)}{(x+\log (x))^3 \log ^2\left (9 x^2\right )}\right ) \, dx-16 \int \frac {e^x}{(x+\log (x))^2 \log ^3\left (9 x^2\right )} \, dx\\ &=4 \int \frac {e^x x}{(x+\log (x))^3 \log ^2\left (9 x^2\right )} \, dx+4 \int \frac {e^x x^2}{(x+\log (x))^3 \log ^2\left (9 x^2\right )} \, dx+4 \int \frac {e^x \log (x)}{(x+\log (x))^3 \log ^2\left (9 x^2\right )} \, dx+4 \int \frac {e^x x \log (x)}{(x+\log (x))^3 \log ^2\left (9 x^2\right )} \, dx-8 \int \frac {e^x}{(x+\log (x))^3 \log ^2\left (9 x^2\right )} \, dx-8 \int \frac {e^x x}{(x+\log (x))^3 \log ^2\left (9 x^2\right )} \, dx-16 \int \frac {e^x}{(x+\log (x))^2 \log ^3\left (9 x^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.48, size = 20, normalized size = 0.91 \begin {gather*} \frac {4 e^x x}{(x+\log (x))^2 \log ^2\left (9 x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.54, size = 64, normalized size = 2.91 \begin {gather*} \frac {x e^{x}}{x^{2} \log \relax (3)^{2} + 2 \, {\left (x + \log \relax (3)\right )} \log \relax (x)^{3} + \log \relax (x)^{4} + {\left (x^{2} + 4 \, x \log \relax (3) + \log \relax (3)^{2}\right )} \log \relax (x)^{2} + 2 \, {\left (x^{2} \log \relax (3) + x \log \relax (3)^{2}\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.40, size = 78, normalized size = 3.55 \begin {gather*} \frac {x e^{x}}{x^{2} \log \relax (3)^{2} + 2 \, x^{2} \log \relax (3) \log \relax (x) + 2 \, x \log \relax (3)^{2} \log \relax (x) + x^{2} \log \relax (x)^{2} + 4 \, x \log \relax (3) \log \relax (x)^{2} + \log \relax (3)^{2} \log \relax (x)^{2} + 2 \, x \log \relax (x)^{3} + 2 \, \log \relax (3) \log \relax (x)^{3} + \log \relax (x)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 180.00, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (4 x +4\right ) {\mathrm e}^{x} \ln \relax (x )+\left (4 x^{2}-4 x -8\right ) {\mathrm e}^{x}\right ) \ln \left (9 x^{2}\right )-16 \,{\mathrm e}^{x} \ln \relax (x )-16 \,{\mathrm e}^{x} x}{\left (\ln \relax (x )^{3}+3 x \ln \relax (x )^{2}+3 x^{2} \ln \relax (x )+x^{3}\right ) \ln \left (9 x^{2}\right )^{3}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.64, size = 64, normalized size = 2.91 \begin {gather*} \frac {x e^{x}}{x^{2} \log \relax (3)^{2} + 2 \, {\left (x + \log \relax (3)\right )} \log \relax (x)^{3} + \log \relax (x)^{4} + {\left (x^{2} + 4 \, x \log \relax (3) + \log \relax (3)^{2}\right )} \log \relax (x)^{2} + 2 \, {\left (x^{2} \log \relax (3) + x \log \relax (3)^{2}\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.05 \begin {gather*} \int -\frac {16\,{\mathrm {e}}^x\,\ln \relax (x)+\ln \left (9\,x^2\right )\,\left ({\mathrm {e}}^x\,\left (-4\,x^2+4\,x+8\right )-{\mathrm {e}}^x\,\ln \relax (x)\,\left (4\,x+4\right )\right )+16\,x\,{\mathrm {e}}^x}{{\ln \left (9\,x^2\right )}^3\,\left (x^3+3\,x^2\,\ln \relax (x)+3\,x\,{\ln \relax (x)}^2+{\ln \relax (x)}^3\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.70, size = 90, normalized size = 4.09 \begin {gather*} \frac {x e^{x}}{x^{2} \log {\relax (x )}^{2} + 2 x^{2} \log {\relax (3 )} \log {\relax (x )} + x^{2} \log {\relax (3 )}^{2} + 2 x \log {\relax (x )}^{3} + 4 x \log {\relax (3 )} \log {\relax (x )}^{2} + 2 x \log {\relax (3 )}^{2} \log {\relax (x )} + \log {\relax (x )}^{4} + 2 \log {\relax (3 )} \log {\relax (x )}^{3} + \log {\relax (3 )}^{2} \log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________