Optimal. Leaf size=23 \[ -2+\frac {x^2}{e^4}+\frac {4 x^4}{\left (e^x-x\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 0.96, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2 e^{3 x} x-6 e^{2 x} x^2-2 x^4-8 e^4 x^4+e^x \left (6 x^3+e^4 \left (16 x^3-8 x^4\right )\right )}{e^{4+3 x}-3 e^{4+2 x} x+3 e^{4+x} x^2-e^4 x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{3 x} x-6 e^{2 x} x^2+\left (-2-8 e^4\right ) x^4+e^x \left (6 x^3+e^4 \left (16 x^3-8 x^4\right )\right )}{e^{4+3 x}-3 e^{4+2 x} x+3 e^{4+x} x^2-e^4 x^3} \, dx\\ &=\int \frac {2 x \left (e^{3 x}-3 e^{2 x} x+3 e^x x^2-4 e^{4+x} (-2+x) x^2-\left (1+4 e^4\right ) x^3\right )}{e^4 \left (e^x-x\right )^3} \, dx\\ &=\frac {2 \int \frac {x \left (e^{3 x}-3 e^{2 x} x+3 e^x x^2-4 e^{4+x} (-2+x) x^2-\left (1+4 e^4\right ) x^3\right )}{\left (e^x-x\right )^3} \, dx}{e^4}\\ &=\frac {2 \int \left (x-\frac {4 e^4 (-2+x) x^3}{\left (e^x-x\right )^2}-\frac {4 e^4 (-1+x) x^4}{\left (e^x-x\right )^3}\right ) \, dx}{e^4}\\ &=\frac {x^2}{e^4}-8 \int \frac {(-2+x) x^3}{\left (e^x-x\right )^2} \, dx-8 \int \frac {(-1+x) x^4}{\left (e^x-x\right )^3} \, dx\\ &=\frac {x^2}{e^4}-8 \int \left (-\frac {2 x^3}{\left (e^x-x\right )^2}+\frac {x^4}{\left (e^x-x\right )^2}\right ) \, dx-8 \int \left (-\frac {x^4}{\left (e^x-x\right )^3}+\frac {x^5}{\left (e^x-x\right )^3}\right ) \, dx\\ &=\frac {x^2}{e^4}+8 \int \frac {x^4}{\left (e^x-x\right )^3} \, dx-8 \int \frac {x^4}{\left (e^x-x\right )^2} \, dx-8 \int \frac {x^5}{\left (e^x-x\right )^3} \, dx+16 \int \frac {x^3}{\left (e^x-x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 30, normalized size = 1.30 \begin {gather*} -\frac {2 \left (-\frac {x^2}{2}-\frac {2 e^4 x^4}{\left (e^x-x\right )^2}\right )}{e^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.59, size = 56, normalized size = 2.43 \begin {gather*} \frac {4 \, x^{4} e^{12} + x^{4} e^{8} - 2 \, x^{3} e^{\left (x + 8\right )} + x^{2} e^{\left (2 \, x + 8\right )}}{x^{2} e^{12} - 2 \, x e^{\left (x + 12\right )} + e^{\left (2 \, x + 12\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.19, size = 49, normalized size = 2.13 \begin {gather*} \frac {4 \, x^{4} e^{4} + x^{4} - 2 \, x^{3} e^{x} + x^{2} e^{\left (2 \, x\right )}}{x^{2} e^{4} - 2 \, x e^{\left (x + 4\right )} + e^{\left (2 \, x + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.15, size = 21, normalized size = 0.91
method | result | size |
risch | \(x^{2} {\mathrm e}^{-4}+\frac {4 x^{4}}{\left (x -{\mathrm e}^{x}\right )^{2}}\) | \(21\) |
norman | \(\frac {x^{2} {\mathrm e}^{-4} {\mathrm e}^{2 x}+\left (4 \,{\mathrm e}^{4}+1\right ) {\mathrm e}^{-4} x^{4}-2 \,{\mathrm e}^{-4} x^{3} {\mathrm e}^{x}}{\left (x -{\mathrm e}^{x}\right )^{2}}\) | \(48\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.87, size = 49, normalized size = 2.13 \begin {gather*} \frac {x^{4} {\left (4 \, e^{4} + 1\right )} - 2 \, x^{3} e^{x} + x^{2} e^{\left (2 \, x\right )}}{x^{2} e^{4} - 2 \, x e^{\left (x + 4\right )} + e^{\left (2 \, x + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.19, size = 49, normalized size = 2.13 \begin {gather*} \frac {x^4\,\left (4\,{\mathrm {e}}^4+1\right )-2\,x^3\,{\mathrm {e}}^x+x^2\,{\mathrm {e}}^{2\,x}}{{\mathrm {e}}^{2\,x+4}-2\,x\,{\mathrm {e}}^{x+4}+x^2\,{\mathrm {e}}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 26, normalized size = 1.13 \begin {gather*} \frac {4 x^{4}}{x^{2} - 2 x e^{x} + e^{2 x}} + \frac {x^{2}}{e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________