Optimal. Leaf size=24 \[ 24 e^{-(3-x)^2-x (-1+\log (\log (\log (x))))} x \]
________________________________________________________________________________________
Rubi [F] time = 1.42, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-9+7 x-x^2-x \log (\log (\log (x)))} \left (-24 x+\left (24+168 x-48 x^2\right ) \log (x) \log (\log (x))-24 x \log (x) \log (\log (x)) \log (\log (\log (x)))\right )}{\log (x) \log (\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {24 e^{-9+7 x-x^2-x \log (\log (\log (x)))} \left (x-\log (x) \log (\log (x))-7 x \log (x) \log (\log (x))+2 x^2 \log (x) \log (\log (x))\right )}{\log (x) \log (\log (x))}-24 e^{-9+7 x-x^2-x \log (\log (\log (x)))} x \log (\log (\log (x)))\right ) \, dx\\ &=-\left (24 \int \frac {e^{-9+7 x-x^2-x \log (\log (\log (x)))} \left (x-\log (x) \log (\log (x))-7 x \log (x) \log (\log (x))+2 x^2 \log (x) \log (\log (x))\right )}{\log (x) \log (\log (x))} \, dx\right )-24 \int e^{-9+7 x-x^2-x \log (\log (\log (x)))} x \log (\log (\log (x))) \, dx\\ &=-\left (24 \int \left (-e^{-9+7 x-x^2-x \log (\log (\log (x)))}-7 e^{-9+7 x-x^2-x \log (\log (\log (x)))} x+2 e^{-9+7 x-x^2-x \log (\log (\log (x)))} x^2+\frac {e^{-9+7 x-x^2-x \log (\log (\log (x)))} x}{\log (x) \log (\log (x))}\right ) \, dx\right )-24 \int e^{-9+7 x-x^2-x \log (\log (\log (x)))} x \log (\log (\log (x))) \, dx\\ &=24 \int e^{-9+7 x-x^2-x \log (\log (\log (x)))} \, dx-24 \int \frac {e^{-9+7 x-x^2-x \log (\log (\log (x)))} x}{\log (x) \log (\log (x))} \, dx-24 \int e^{-9+7 x-x^2-x \log (\log (\log (x)))} x \log (\log (\log (x))) \, dx-48 \int e^{-9+7 x-x^2-x \log (\log (\log (x)))} x^2 \, dx+168 \int e^{-9+7 x-x^2-x \log (\log (\log (x)))} x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.36, size = 22, normalized size = 0.92 \begin {gather*} 24 e^{-9+7 x-x^2} x \log ^{-x}(\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 21, normalized size = 0.88 \begin {gather*} 24 \, x e^{\left (-x^{2} - x \log \left (\log \left (\log \relax (x)\right )\right ) + 7 \, x - 9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 22, normalized size = 0.92
method | result | size |
risch | \(24 x \ln \left (\ln \relax (x )\right )^{-x} {\mathrm e}^{-x^{2}+7 x -9}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.72, size = 21, normalized size = 0.88 \begin {gather*} 24 \, x e^{\left (-x^{2} - x \log \left (\log \left (\log \relax (x)\right )\right ) + 7 \, x - 9\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.24, size = 22, normalized size = 0.92 \begin {gather*} \frac {24\,x\,{\mathrm {e}}^{7\,x}\,{\mathrm {e}}^{-9}\,{\mathrm {e}}^{-x^2}}{{\ln \left (\ln \relax (x)\right )}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 16.05, size = 20, normalized size = 0.83 \begin {gather*} 24 x e^{- x^{2} - x \log {\left (\log {\left (\log {\relax (x )} \right )} \right )} + 7 x - 9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________