Optimal. Leaf size=22 \[ \frac {3}{5 \log \left (1+e^{\log ^2\left (\left (2+x^2\right )^2\right )}+x\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.21, antiderivative size = 25, normalized size of antiderivative = 1.14, number of steps used = 1, number of rules used = 1, integrand size = 98, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.010, Rules used = {6686} \begin {gather*} \frac {3}{5 \log \left (e^{\log ^2\left (x^4+4 x^2+4\right )}+x+1\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6686
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {3}{5 \log \left (1+e^{\log ^2\left (4+4 x^2+x^4\right )}+x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 22, normalized size = 1.00 \begin {gather*} \frac {3}{5 \log \left (1+e^{\log ^2\left (\left (2+x^2\right )^2\right )}+x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 22, normalized size = 1.00 \begin {gather*} \frac {3}{5 \, \log \left (x + e^{\left (\log \left (x^{4} + 4 \, x^{2} + 4\right )^{2}\right )} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.48, size = 22, normalized size = 1.00 \begin {gather*} \frac {3}{5 \, \log \left (x + e^{\left (\log \left (x^{4} + 4 \, x^{2} + 4\right )^{2}\right )} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.05, size = 0, normalized size = 0.00 \[\int \frac {-24 x \ln \left (x^{4}+4 x^{2}+4\right ) {\mathrm e}^{\ln \left (x^{4}+4 x^{2}+4\right )^{2}}-3 x^{2}-6}{\left (\left (5 x^{2}+10\right ) {\mathrm e}^{\ln \left (x^{4}+4 x^{2}+4\right )^{2}}+5 x^{3}+5 x^{2}+10 x +10\right ) \ln \left ({\mathrm e}^{\ln \left (x^{4}+4 x^{2}+4\right )^{2}}+x +1\right )^{2}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.61, size = 19, normalized size = 0.86 \begin {gather*} \frac {3}{5 \, \log \left (x + e^{\left (4 \, \log \left (x^{2} + 2\right )^{2}\right )} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.35, size = 22, normalized size = 1.00 \begin {gather*} \frac {3}{5\,\ln \left (x+{\mathrm {e}}^{{\ln \left (x^4+4\,x^2+4\right )}^2}+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.99, size = 22, normalized size = 1.00 \begin {gather*} \frac {3}{5 \log {\left (x + e^{\log {\left (x^{4} + 4 x^{2} + 4 \right )}^{2}} + 1 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________