Optimal. Leaf size=21 \[ -\frac {x+\log (x)}{\left (x+x^2\right ) \log ((-1+x) x)} \]
________________________________________________________________________________________
Rubi [F] time = 3.69, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-x+x^2+2 x^3+\left (-1+x+2 x^2\right ) \log (x)+\left (1-2 x^2+x^3+\left (-1-x+2 x^2\right ) \log (x)\right ) \log \left (-x+x^2\right )}{\left (-x^2-x^3+x^4+x^5\right ) \log ^2\left (-x+x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x-x^2-2 x^3-\left (-1+x+2 x^2\right ) \log (x)-\left (1-2 x^2+x^3+\left (-1-x+2 x^2\right ) \log (x)\right ) \log \left (-x+x^2\right )}{(1-x) x^2 (1+x)^2 \log ^2((-1+x) x)} \, dx\\ &=\int \left (\frac {1}{(-1+x) (1+x)^2 \log ^2((-1+x) x)}-\frac {1}{(-1+x) x (1+x)^2 \log ^2((-1+x) x)}+\frac {2 x}{(-1+x) (1+x)^2 \log ^2((-1+x) x)}+\frac {(-1+2 x) \log (x)}{x^2 \left (-1+x^2\right ) \log ^2((-1+x) x)}+\frac {-1-x+x^2+\log (x)+2 x \log (x)}{x^2 (1+x)^2 \log ((-1+x) x)}\right ) \, dx\\ &=2 \int \frac {x}{(-1+x) (1+x)^2 \log ^2((-1+x) x)} \, dx+\int \frac {1}{(-1+x) (1+x)^2 \log ^2((-1+x) x)} \, dx-\int \frac {1}{(-1+x) x (1+x)^2 \log ^2((-1+x) x)} \, dx+\int \frac {(-1+2 x) \log (x)}{x^2 \left (-1+x^2\right ) \log ^2((-1+x) x)} \, dx+\int \frac {-1-x+x^2+\log (x)+2 x \log (x)}{x^2 (1+x)^2 \log ((-1+x) x)} \, dx\\ &=2 \int \frac {x}{(-1+x) (1+x)^2 \log ^2((-1+x) x)} \, dx+\int \left (\frac {\log (x)}{2 (-1+x) \log ^2((-1+x) x)}+\frac {\log (x)}{x^2 \log ^2((-1+x) x)}-\frac {2 \log (x)}{x \log ^2((-1+x) x)}+\frac {3 \log (x)}{2 (1+x) \log ^2((-1+x) x)}\right ) \, dx+\int \left (\frac {-1-x+x^2+\log (x)+2 x \log (x)}{x^2 \log ((-1+x) x)}-\frac {2 \left (-1-x+x^2+\log (x)+2 x \log (x)\right )}{x \log ((-1+x) x)}+\frac {-1-x+x^2+\log (x)+2 x \log (x)}{(1+x)^2 \log ((-1+x) x)}+\frac {2 \left (-1-x+x^2+\log (x)+2 x \log (x)\right )}{(1+x) \log ((-1+x) x)}\right ) \, dx+\int \frac {1}{(-1+x) (1+x)^2 \log ^2((-1+x) x)} \, dx-\int \frac {1}{(-1+x) x (1+x)^2 \log ^2((-1+x) x)} \, dx\\ &=\frac {1}{2} \int \frac {\log (x)}{(-1+x) \log ^2((-1+x) x)} \, dx+\frac {3}{2} \int \frac {\log (x)}{(1+x) \log ^2((-1+x) x)} \, dx+2 \int \frac {x}{(-1+x) (1+x)^2 \log ^2((-1+x) x)} \, dx-2 \int \frac {\log (x)}{x \log ^2((-1+x) x)} \, dx-2 \int \frac {-1-x+x^2+\log (x)+2 x \log (x)}{x \log ((-1+x) x)} \, dx+2 \int \frac {-1-x+x^2+\log (x)+2 x \log (x)}{(1+x) \log ((-1+x) x)} \, dx+\int \frac {1}{(-1+x) (1+x)^2 \log ^2((-1+x) x)} \, dx-\int \frac {1}{(-1+x) x (1+x)^2 \log ^2((-1+x) x)} \, dx+\int \frac {\log (x)}{x^2 \log ^2((-1+x) x)} \, dx+\int \frac {-1-x+x^2+\log (x)+2 x \log (x)}{x^2 \log ((-1+x) x)} \, dx+\int \frac {-1-x+x^2+\log (x)+2 x \log (x)}{(1+x)^2 \log ((-1+x) x)} \, dx\\ &=\frac {1}{2} \int \frac {\log (x)}{(-1+x) \log ^2((-1+x) x)} \, dx+\frac {3}{2} \int \frac {\log (x)}{(1+x) \log ^2((-1+x) x)} \, dx-2 \int \left (-\frac {1}{\log ((-1+x) x)}-\frac {1}{x \log ((-1+x) x)}+\frac {x}{\log ((-1+x) x)}+\frac {2 \log (x)}{\log ((-1+x) x)}+\frac {\log (x)}{x \log ((-1+x) x)}\right ) \, dx+2 \int \left (-\frac {1}{(1+x) \log ((-1+x) x)}-\frac {x}{(1+x) \log ((-1+x) x)}+\frac {x^2}{(1+x) \log ((-1+x) x)}+\frac {\log (x)}{(1+x) \log ((-1+x) x)}+\frac {2 x \log (x)}{(1+x) \log ((-1+x) x)}\right ) \, dx+2 \int \frac {x}{(-1+x) (1+x)^2 \log ^2((-1+x) x)} \, dx-2 \int \frac {\log (x)}{x \log ^2((-1+x) x)} \, dx+\int \left (\frac {1}{\log ((-1+x) x)}-\frac {1}{x^2 \log ((-1+x) x)}-\frac {1}{x \log ((-1+x) x)}+\frac {\log (x)}{x^2 \log ((-1+x) x)}+\frac {2 \log (x)}{x \log ((-1+x) x)}\right ) \, dx+\int \left (-\frac {1}{(1+x)^2 \log ((-1+x) x)}-\frac {x}{(1+x)^2 \log ((-1+x) x)}+\frac {x^2}{(1+x)^2 \log ((-1+x) x)}+\frac {\log (x)}{(1+x)^2 \log ((-1+x) x)}+\frac {2 x \log (x)}{(1+x)^2 \log ((-1+x) x)}\right ) \, dx+\int \frac {1}{(-1+x) (1+x)^2 \log ^2((-1+x) x)} \, dx-\int \frac {1}{(-1+x) x (1+x)^2 \log ^2((-1+x) x)} \, dx+\int \frac {\log (x)}{x^2 \log ^2((-1+x) x)} \, dx\\ &=\frac {1}{2} \int \frac {\log (x)}{(-1+x) \log ^2((-1+x) x)} \, dx+\frac {3}{2} \int \frac {\log (x)}{(1+x) \log ^2((-1+x) x)} \, dx+2 \int \frac {x}{(-1+x) (1+x)^2 \log ^2((-1+x) x)} \, dx-2 \int \frac {\log (x)}{x \log ^2((-1+x) x)} \, dx+2 \int \frac {1}{\log ((-1+x) x)} \, dx+2 \int \frac {1}{x \log ((-1+x) x)} \, dx-2 \int \frac {x}{\log ((-1+x) x)} \, dx-2 \int \frac {1}{(1+x) \log ((-1+x) x)} \, dx-2 \int \frac {x}{(1+x) \log ((-1+x) x)} \, dx+2 \int \frac {x^2}{(1+x) \log ((-1+x) x)} \, dx+2 \int \frac {x \log (x)}{(1+x)^2 \log ((-1+x) x)} \, dx+2 \int \frac {\log (x)}{(1+x) \log ((-1+x) x)} \, dx-4 \int \frac {\log (x)}{\log ((-1+x) x)} \, dx+4 \int \frac {x \log (x)}{(1+x) \log ((-1+x) x)} \, dx+\int \frac {1}{(-1+x) (1+x)^2 \log ^2((-1+x) x)} \, dx-\int \frac {1}{(-1+x) x (1+x)^2 \log ^2((-1+x) x)} \, dx+\int \frac {\log (x)}{x^2 \log ^2((-1+x) x)} \, dx+\int \frac {1}{\log ((-1+x) x)} \, dx-\int \frac {1}{x^2 \log ((-1+x) x)} \, dx-\int \frac {1}{x \log ((-1+x) x)} \, dx-\int \frac {1}{(1+x)^2 \log ((-1+x) x)} \, dx-\int \frac {x}{(1+x)^2 \log ((-1+x) x)} \, dx+\int \frac {x^2}{(1+x)^2 \log ((-1+x) x)} \, dx+\int \frac {\log (x)}{x^2 \log ((-1+x) x)} \, dx+\int \frac {\log (x)}{(1+x)^2 \log ((-1+x) x)} \, dx\\ &=\frac {1}{2} \int \frac {\log (x)}{(-1+x) \log ^2((-1+x) x)} \, dx+\frac {3}{2} \int \frac {\log (x)}{(1+x) \log ^2((-1+x) x)} \, dx+2 \int \left (-\frac {\log (x)}{(1+x)^2 \log ((-1+x) x)}+\frac {\log (x)}{(1+x) \log ((-1+x) x)}\right ) \, dx+2 \int \frac {x}{(-1+x) (1+x)^2 \log ^2((-1+x) x)} \, dx-2 \int \frac {\log (x)}{x \log ^2((-1+x) x)} \, dx+2 \int \frac {1}{\log ((-1+x) x)} \, dx+2 \int \frac {1}{x \log ((-1+x) x)} \, dx-2 \int \frac {x}{\log ((-1+x) x)} \, dx-2 \int \frac {1}{(1+x) \log ((-1+x) x)} \, dx-2 \int \frac {x}{(1+x) \log ((-1+x) x)} \, dx+2 \int \frac {x^2}{(1+x) \log ((-1+x) x)} \, dx+2 \int \frac {\log (x)}{(1+x) \log ((-1+x) x)} \, dx+4 \int \left (\frac {\log (x)}{\log ((-1+x) x)}-\frac {\log (x)}{(1+x) \log ((-1+x) x)}\right ) \, dx-4 \int \frac {\log (x)}{\log ((-1+x) x)} \, dx+\int \frac {1}{(-1+x) (1+x)^2 \log ^2((-1+x) x)} \, dx-\int \frac {1}{(-1+x) x (1+x)^2 \log ^2((-1+x) x)} \, dx+\int \frac {\log (x)}{x^2 \log ^2((-1+x) x)} \, dx+\int \frac {1}{\log ((-1+x) x)} \, dx-\int \frac {1}{x^2 \log ((-1+x) x)} \, dx-\int \frac {1}{x \log ((-1+x) x)} \, dx-\int \frac {1}{(1+x)^2 \log ((-1+x) x)} \, dx-\int \frac {x}{(1+x)^2 \log ((-1+x) x)} \, dx+\int \frac {x^2}{(1+x)^2 \log ((-1+x) x)} \, dx+\int \frac {\log (x)}{x^2 \log ((-1+x) x)} \, dx+\int \frac {\log (x)}{(1+x)^2 \log ((-1+x) x)} \, dx\\ &=\frac {1}{2} \int \frac {\log (x)}{(-1+x) \log ^2((-1+x) x)} \, dx+\frac {3}{2} \int \frac {\log (x)}{(1+x) \log ^2((-1+x) x)} \, dx+2 \int \frac {x}{(-1+x) (1+x)^2 \log ^2((-1+x) x)} \, dx-2 \int \frac {\log (x)}{x \log ^2((-1+x) x)} \, dx+2 \int \frac {1}{\log ((-1+x) x)} \, dx+2 \int \frac {1}{x \log ((-1+x) x)} \, dx-2 \int \frac {x}{\log ((-1+x) x)} \, dx-2 \int \frac {1}{(1+x) \log ((-1+x) x)} \, dx-2 \int \frac {x}{(1+x) \log ((-1+x) x)} \, dx+2 \int \frac {x^2}{(1+x) \log ((-1+x) x)} \, dx-2 \int \frac {\log (x)}{(1+x)^2 \log ((-1+x) x)} \, dx+2 \left (2 \int \frac {\log (x)}{(1+x) \log ((-1+x) x)} \, dx\right )-4 \int \frac {\log (x)}{(1+x) \log ((-1+x) x)} \, dx+\int \frac {1}{(-1+x) (1+x)^2 \log ^2((-1+x) x)} \, dx-\int \frac {1}{(-1+x) x (1+x)^2 \log ^2((-1+x) x)} \, dx+\int \frac {\log (x)}{x^2 \log ^2((-1+x) x)} \, dx+\int \frac {1}{\log ((-1+x) x)} \, dx-\int \frac {1}{x^2 \log ((-1+x) x)} \, dx-\int \frac {1}{x \log ((-1+x) x)} \, dx-\int \frac {1}{(1+x)^2 \log ((-1+x) x)} \, dx-\int \frac {x}{(1+x)^2 \log ((-1+x) x)} \, dx+\int \frac {x^2}{(1+x)^2 \log ((-1+x) x)} \, dx+\int \frac {\log (x)}{x^2 \log ((-1+x) x)} \, dx+\int \frac {\log (x)}{(1+x)^2 \log ((-1+x) x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.35, size = 22, normalized size = 1.05 \begin {gather*} -\frac {x+\log (x)}{x (1+x) \log ((-1+x) x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.56, size = 23, normalized size = 1.10 \begin {gather*} -\frac {x + \log \relax (x)}{{\left (x^{2} + x\right )} \log \left (x^{2} - x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.39, size = 33, normalized size = 1.57 \begin {gather*} -\frac {x + \log \relax (x)}{x^{2} \log \left (x - 1\right ) + x^{2} \log \relax (x) + x \log \left (x - 1\right ) + x \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.08, size = 106, normalized size = 5.05
method | result | size |
risch | \(-\frac {2 \left (x +\ln \relax (x )\right )}{\left (x +1\right ) x \left (2 \ln \left (x -1\right )+2 \ln \relax (x )-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (x -1\right )\right ) \mathrm {csgn}\left (i x \left (x -1\right )\right )+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \left (x -1\right )\right )^{2}+i \pi \,\mathrm {csgn}\left (i \left (x -1\right )\right ) \mathrm {csgn}\left (i x \left (x -1\right )\right )^{2}-i \pi \mathrm {csgn}\left (i x \left (x -1\right )\right )^{3}\right )}\) | \(106\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.69, size = 27, normalized size = 1.29 \begin {gather*} -\frac {x + \log \relax (x)}{{\left (x^{2} + x\right )} \log \left (x - 1\right ) + {\left (x^{2} + x\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.67, size = 24, normalized size = 1.14 \begin {gather*} -\frac {x+\ln \relax (x)}{x\,\ln \left (x^2-x\right )\,\left (x+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 17, normalized size = 0.81 \begin {gather*} \frac {- x - \log {\relax (x )}}{\left (x^{2} + x\right ) \log {\left (x^{2} - x \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________