Optimal. Leaf size=33 \[ x+x (1+x) \left (-x+\frac {1}{4} \left (-2+2 x+\frac {x}{1-e^x}\right )\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 2.80, antiderivative size = 107, normalized size of antiderivative = 3.24, number of steps used = 128, number of rules used = 13, integrand size = 110, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {6741, 12, 6742, 2185, 2184, 2190, 2531, 6609, 2282, 6589, 2191, 2279, 2391} \begin {gather*} -\frac {x^4}{4 \left (1-e^x\right )}+\frac {x^4}{16 \left (1-e^x\right )^2}+\frac {x^4}{4}-\frac {x^3}{2 \left (1-e^x\right )}+\frac {x^3}{16 \left (1-e^x\right )^2}+\frac {3 x^3}{4}-\frac {x^2}{4 \left (1-e^x\right )}+\frac {3 x^2}{4}+\frac {5 x}{4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2184
Rule 2185
Rule 2190
Rule 2191
Rule 2279
Rule 2282
Rule 2391
Rule 2531
Rule 6589
Rule 6609
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {20+16 x+15 x^2+4 x^3-e^{3 x} \left (20+24 x+36 x^2+16 x^3\right )-e^{2 x} \left (-60-64 x-88 x^2-40 x^3-4 x^4\right )-e^x \left (60+56 x+67 x^2+26 x^3+2 x^4\right )}{16 \left (1-e^x\right )^3} \, dx\\ &=\frac {1}{16} \int \frac {20+16 x+15 x^2+4 x^3-e^{3 x} \left (20+24 x+36 x^2+16 x^3\right )-e^{2 x} \left (-60-64 x-88 x^2-40 x^3-4 x^4\right )-e^x \left (60+56 x+67 x^2+26 x^3+2 x^4\right )}{\left (1-e^x\right )^3} \, dx\\ &=\frac {1}{16} \int \left (-\frac {2 x^3 (1+x)}{\left (-1+e^x\right )^3}-\frac {x^2 \left (1+6 x+6 x^2\right )}{\left (-1+e^x\right )^2}-\frac {4 x \left (-2-5 x-2 x^2+x^3\right )}{-1+e^x}+4 \left (5+6 x+9 x^2+4 x^3\right )\right ) \, dx\\ &=-\left (\frac {1}{16} \int \frac {x^2 \left (1+6 x+6 x^2\right )}{\left (-1+e^x\right )^2} \, dx\right )-\frac {1}{8} \int \frac {x^3 (1+x)}{\left (-1+e^x\right )^3} \, dx-\frac {1}{4} \int \frac {x \left (-2-5 x-2 x^2+x^3\right )}{-1+e^x} \, dx+\frac {1}{4} \int \left (5+6 x+9 x^2+4 x^3\right ) \, dx\\ &=\frac {5 x}{4}+\frac {3 x^2}{4}+\frac {3 x^3}{4}+\frac {x^4}{4}-\frac {1}{16} \int \left (\frac {x^2}{\left (-1+e^x\right )^2}+\frac {6 x^3}{\left (-1+e^x\right )^2}+\frac {6 x^4}{\left (-1+e^x\right )^2}\right ) \, dx-\frac {1}{8} \int \left (\frac {x^3}{\left (-1+e^x\right )^3}+\frac {x^4}{\left (-1+e^x\right )^3}\right ) \, dx-\frac {1}{4} \int \left (-\frac {2 x}{-1+e^x}-\frac {5 x^2}{-1+e^x}-\frac {2 x^3}{-1+e^x}+\frac {x^4}{-1+e^x}\right ) \, dx\\ &=\frac {5 x}{4}+\frac {3 x^2}{4}+\frac {3 x^3}{4}+\frac {x^4}{4}-\frac {1}{16} \int \frac {x^2}{\left (-1+e^x\right )^2} \, dx-\frac {1}{8} \int \frac {x^3}{\left (-1+e^x\right )^3} \, dx-\frac {1}{8} \int \frac {x^4}{\left (-1+e^x\right )^3} \, dx-\frac {1}{4} \int \frac {x^4}{-1+e^x} \, dx-\frac {3}{8} \int \frac {x^3}{\left (-1+e^x\right )^2} \, dx-\frac {3}{8} \int \frac {x^4}{\left (-1+e^x\right )^2} \, dx+\frac {1}{2} \int \frac {x}{-1+e^x} \, dx+\frac {1}{2} \int \frac {x^3}{-1+e^x} \, dx+\frac {5}{4} \int \frac {x^2}{-1+e^x} \, dx\\ &=\frac {5 x}{4}+\frac {x^2}{2}+\frac {x^3}{3}+\frac {x^4}{8}+\frac {x^5}{20}-\frac {1}{16} \int \frac {e^x x^2}{\left (-1+e^x\right )^2} \, dx+\frac {1}{16} \int \frac {x^2}{-1+e^x} \, dx-\frac {1}{8} \int \frac {e^x x^3}{\left (-1+e^x\right )^3} \, dx+\frac {1}{8} \int \frac {x^3}{\left (-1+e^x\right )^2} \, dx-\frac {1}{8} \int \frac {e^x x^4}{\left (-1+e^x\right )^3} \, dx+\frac {1}{8} \int \frac {x^4}{\left (-1+e^x\right )^2} \, dx-\frac {1}{4} \int \frac {e^x x^4}{-1+e^x} \, dx-\frac {3}{8} \int \frac {e^x x^3}{\left (-1+e^x\right )^2} \, dx+\frac {3}{8} \int \frac {x^3}{-1+e^x} \, dx-\frac {3}{8} \int \frac {e^x x^4}{\left (-1+e^x\right )^2} \, dx+\frac {3}{8} \int \frac {x^4}{-1+e^x} \, dx+\frac {1}{2} \int \frac {e^x x}{-1+e^x} \, dx+\frac {1}{2} \int \frac {e^x x^3}{-1+e^x} \, dx+\frac {5}{4} \int \frac {e^x x^2}{-1+e^x} \, dx\\ &=\frac {5 x}{4}+\frac {x^2}{2}-\frac {x^2}{16 \left (1-e^x\right )}+\frac {5 x^3}{16}+\frac {x^3}{16 \left (1-e^x\right )^2}-\frac {3 x^3}{8 \left (1-e^x\right )}+\frac {x^4}{32}+\frac {x^4}{16 \left (1-e^x\right )^2}-\frac {3 x^4}{8 \left (1-e^x\right )}-\frac {x^5}{40}+\frac {1}{2} x \log \left (1-e^x\right )+\frac {5}{4} x^2 \log \left (1-e^x\right )+\frac {1}{2} x^3 \log \left (1-e^x\right )-\frac {1}{4} x^4 \log \left (1-e^x\right )+\frac {1}{16} \int \frac {e^x x^2}{-1+e^x} \, dx-\frac {1}{8} \int \frac {x}{-1+e^x} \, dx+\frac {1}{8} \int \frac {e^x x^3}{\left (-1+e^x\right )^2} \, dx-\frac {1}{8} \int \frac {x^3}{-1+e^x} \, dx+\frac {1}{8} \int \frac {e^x x^4}{\left (-1+e^x\right )^2} \, dx-\frac {1}{8} \int \frac {x^4}{-1+e^x} \, dx-\frac {3}{16} \int \frac {x^2}{\left (-1+e^x\right )^2} \, dx-\frac {1}{4} \int \frac {x^3}{\left (-1+e^x\right )^2} \, dx+\frac {3}{8} \int \frac {e^x x^3}{-1+e^x} \, dx+\frac {3}{8} \int \frac {e^x x^4}{-1+e^x} \, dx-\frac {1}{2} \int \log \left (1-e^x\right ) \, dx-\frac {9}{8} \int \frac {x^2}{-1+e^x} \, dx-\frac {3}{2} \int \frac {x^3}{-1+e^x} \, dx-\frac {3}{2} \int x^2 \log \left (1-e^x\right ) \, dx-\frac {5}{2} \int x \log \left (1-e^x\right ) \, dx+\int x^3 \log \left (1-e^x\right ) \, dx\\ &=\frac {5 x}{4}+\frac {9 x^2}{16}-\frac {x^2}{16 \left (1-e^x\right )}+\frac {11 x^3}{16}+\frac {x^3}{16 \left (1-e^x\right )^2}-\frac {x^3}{4 \left (1-e^x\right )}+\frac {7 x^4}{16}+\frac {x^4}{16 \left (1-e^x\right )^2}-\frac {x^4}{4 \left (1-e^x\right )}+\frac {1}{2} x \log \left (1-e^x\right )+\frac {21}{16} x^2 \log \left (1-e^x\right )+\frac {7}{8} x^3 \log \left (1-e^x\right )+\frac {1}{8} x^4 \log \left (1-e^x\right )+\frac {5 x \text {Li}_2\left (e^x\right )}{2}+\frac {3}{2} x^2 \text {Li}_2\left (e^x\right )-x^3 \text {Li}_2\left (e^x\right )-\frac {1}{8} \int \frac {e^x x}{-1+e^x} \, dx-\frac {1}{8} \int \frac {e^x x^3}{-1+e^x} \, dx-\frac {1}{8} \int \frac {e^x x^4}{-1+e^x} \, dx-\frac {1}{8} \int x \log \left (1-e^x\right ) \, dx-\frac {3}{16} \int \frac {e^x x^2}{\left (-1+e^x\right )^2} \, dx+\frac {3}{16} \int \frac {x^2}{-1+e^x} \, dx-\frac {1}{4} \int \frac {e^x x^3}{\left (-1+e^x\right )^2} \, dx+\frac {1}{4} \int \frac {x^3}{-1+e^x} \, dx+\frac {3}{8} \int \frac {x^2}{-1+e^x} \, dx+\frac {1}{2} \int \frac {x^3}{-1+e^x} \, dx-\frac {1}{2} \operatorname {Subst}\left (\int \frac {\log (1-x)}{x} \, dx,x,e^x\right )-\frac {9}{8} \int \frac {e^x x^2}{-1+e^x} \, dx-\frac {9}{8} \int x^2 \log \left (1-e^x\right ) \, dx-\frac {3}{2} \int \frac {e^x x^3}{-1+e^x} \, dx-\frac {3}{2} \int x^3 \log \left (1-e^x\right ) \, dx-\frac {5}{2} \int \text {Li}_2\left (e^x\right ) \, dx-3 \int x \text {Li}_2\left (e^x\right ) \, dx+3 \int x^2 \text {Li}_2\left (e^x\right ) \, dx\\ &=\frac {5 x}{4}+\frac {9 x^2}{16}-\frac {x^2}{4 \left (1-e^x\right )}+\frac {x^3}{2}+\frac {x^3}{16 \left (1-e^x\right )^2}-\frac {x^3}{2 \left (1-e^x\right )}+\frac {x^4}{4}+\frac {x^4}{16 \left (1-e^x\right )^2}-\frac {x^4}{4 \left (1-e^x\right )}+\frac {3}{8} x \log \left (1-e^x\right )+\frac {3}{16} x^2 \log \left (1-e^x\right )-\frac {3}{4} x^3 \log \left (1-e^x\right )+\frac {\text {Li}_2\left (e^x\right )}{2}+\frac {21 x \text {Li}_2\left (e^x\right )}{8}+\frac {21}{8} x^2 \text {Li}_2\left (e^x\right )+\frac {1}{2} x^3 \text {Li}_2\left (e^x\right )-3 x \text {Li}_3\left (e^x\right )+3 x^2 \text {Li}_3\left (e^x\right )+\frac {1}{8} \int \log \left (1-e^x\right ) \, dx-\frac {1}{8} \int \text {Li}_2\left (e^x\right ) \, dx+\frac {3}{16} \int \frac {e^x x^2}{-1+e^x} \, dx+\frac {1}{4} \int \frac {e^x x^3}{-1+e^x} \, dx-\frac {3}{8} \int \frac {x}{-1+e^x} \, dx+\frac {3}{8} \int \frac {e^x x^2}{-1+e^x} \, dx+\frac {3}{8} \int x^2 \log \left (1-e^x\right ) \, dx+\frac {1}{2} \int \frac {e^x x^3}{-1+e^x} \, dx+\frac {1}{2} \int x^3 \log \left (1-e^x\right ) \, dx-\frac {3}{4} \int \frac {x^2}{-1+e^x} \, dx+\frac {9}{4} \int x \log \left (1-e^x\right ) \, dx-\frac {9}{4} \int x \text {Li}_2\left (e^x\right ) \, dx-\frac {5}{2} \operatorname {Subst}\left (\int \frac {\text {Li}_2(x)}{x} \, dx,x,e^x\right )+3 \int \text {Li}_3\left (e^x\right ) \, dx+\frac {9}{2} \int x^2 \log \left (1-e^x\right ) \, dx-\frac {9}{2} \int x^2 \text {Li}_2\left (e^x\right ) \, dx-6 \int x \text {Li}_3\left (e^x\right ) \, dx\\ &=\frac {5 x}{4}+\frac {3 x^2}{4}-\frac {x^2}{4 \left (1-e^x\right )}+\frac {3 x^3}{4}+\frac {x^3}{16 \left (1-e^x\right )^2}-\frac {x^3}{2 \left (1-e^x\right )}+\frac {x^4}{4}+\frac {x^4}{16 \left (1-e^x\right )^2}-\frac {x^4}{4 \left (1-e^x\right )}+\frac {3}{8} x \log \left (1-e^x\right )+\frac {3}{4} x^2 \log \left (1-e^x\right )+\frac {\text {Li}_2\left (e^x\right )}{2}+\frac {3 x \text {Li}_2\left (e^x\right )}{8}-\frac {9}{4} x^2 \text {Li}_2\left (e^x\right )-\frac {5 \text {Li}_3\left (e^x\right )}{2}-\frac {21 x \text {Li}_3\left (e^x\right )}{4}-\frac {3}{2} x^2 \text {Li}_3\left (e^x\right )-6 x \text {Li}_4\left (e^x\right )+\frac {1}{8} \operatorname {Subst}\left (\int \frac {\log (1-x)}{x} \, dx,x,e^x\right )-\frac {1}{8} \operatorname {Subst}\left (\int \frac {\text {Li}_2(x)}{x} \, dx,x,e^x\right )-\frac {3}{8} \int \frac {e^x x}{-1+e^x} \, dx-\frac {3}{8} \int x \log \left (1-e^x\right ) \, dx-\frac {3}{4} \int \frac {e^x x^2}{-1+e^x} \, dx-\frac {3}{4} \int x \log \left (1-e^x\right ) \, dx-\frac {3}{4} \int x^2 \log \left (1-e^x\right ) \, dx+\frac {3}{4} \int x \text {Li}_2\left (e^x\right ) \, dx-\frac {3}{2} \int x^2 \log \left (1-e^x\right ) \, dx+\frac {3}{2} \int x^2 \text {Li}_2\left (e^x\right ) \, dx+\frac {9}{4} \int \text {Li}_2\left (e^x\right ) \, dx+\frac {9}{4} \int \text {Li}_3\left (e^x\right ) \, dx+3 \operatorname {Subst}\left (\int \frac {\text {Li}_3(x)}{x} \, dx,x,e^x\right )+6 \int \text {Li}_4\left (e^x\right ) \, dx+9 \int x \text {Li}_2\left (e^x\right ) \, dx+9 \int x \text {Li}_3\left (e^x\right ) \, dx\\ &=\frac {5 x}{4}+\frac {3 x^2}{4}-\frac {x^2}{4 \left (1-e^x\right )}+\frac {3 x^3}{4}+\frac {x^3}{16 \left (1-e^x\right )^2}-\frac {x^3}{2 \left (1-e^x\right )}+\frac {x^4}{4}+\frac {x^4}{16 \left (1-e^x\right )^2}-\frac {x^4}{4 \left (1-e^x\right )}+\frac {3 \text {Li}_2\left (e^x\right )}{8}+\frac {3 x \text {Li}_2\left (e^x\right )}{2}-\frac {21 \text {Li}_3\left (e^x\right )}{8}+\frac {9 x \text {Li}_3\left (e^x\right )}{2}+3 \text {Li}_4\left (e^x\right )+3 x \text {Li}_4\left (e^x\right )+\frac {3}{8} \int \log \left (1-e^x\right ) \, dx-\frac {3}{8} \int \text {Li}_2\left (e^x\right ) \, dx-\frac {3}{4} \int \text {Li}_2\left (e^x\right ) \, dx-\frac {3}{4} \int \text {Li}_3\left (e^x\right ) \, dx+\frac {3}{2} \int x \log \left (1-e^x\right ) \, dx-\frac {3}{2} \int x \text {Li}_2\left (e^x\right ) \, dx+\frac {9}{4} \operatorname {Subst}\left (\int \frac {\text {Li}_2(x)}{x} \, dx,x,e^x\right )+\frac {9}{4} \operatorname {Subst}\left (\int \frac {\text {Li}_3(x)}{x} \, dx,x,e^x\right )-3 \int x \text {Li}_2\left (e^x\right ) \, dx-3 \int x \text {Li}_3\left (e^x\right ) \, dx+6 \operatorname {Subst}\left (\int \frac {\text {Li}_4(x)}{x} \, dx,x,e^x\right )-9 \int \text {Li}_3\left (e^x\right ) \, dx-9 \int \text {Li}_4\left (e^x\right ) \, dx\\ &=\frac {5 x}{4}+\frac {3 x^2}{4}-\frac {x^2}{4 \left (1-e^x\right )}+\frac {3 x^3}{4}+\frac {x^3}{16 \left (1-e^x\right )^2}-\frac {x^3}{2 \left (1-e^x\right )}+\frac {x^4}{4}+\frac {x^4}{16 \left (1-e^x\right )^2}-\frac {x^4}{4 \left (1-e^x\right )}+\frac {3 \text {Li}_2\left (e^x\right )}{8}-\frac {3 \text {Li}_3\left (e^x\right )}{8}+\frac {21 \text {Li}_4\left (e^x\right )}{4}+6 \text {Li}_5\left (e^x\right )+\frac {3}{8} \operatorname {Subst}\left (\int \frac {\log (1-x)}{x} \, dx,x,e^x\right )-\frac {3}{8} \operatorname {Subst}\left (\int \frac {\text {Li}_2(x)}{x} \, dx,x,e^x\right )-\frac {3}{4} \operatorname {Subst}\left (\int \frac {\text {Li}_2(x)}{x} \, dx,x,e^x\right )-\frac {3}{4} \operatorname {Subst}\left (\int \frac {\text {Li}_3(x)}{x} \, dx,x,e^x\right )+\frac {3}{2} \int \text {Li}_2\left (e^x\right ) \, dx+\frac {3}{2} \int \text {Li}_3\left (e^x\right ) \, dx+3 \int \text {Li}_3\left (e^x\right ) \, dx+3 \int \text {Li}_4\left (e^x\right ) \, dx-9 \operatorname {Subst}\left (\int \frac {\text {Li}_3(x)}{x} \, dx,x,e^x\right )-9 \operatorname {Subst}\left (\int \frac {\text {Li}_4(x)}{x} \, dx,x,e^x\right )\\ &=\frac {5 x}{4}+\frac {3 x^2}{4}-\frac {x^2}{4 \left (1-e^x\right )}+\frac {3 x^3}{4}+\frac {x^3}{16 \left (1-e^x\right )^2}-\frac {x^3}{2 \left (1-e^x\right )}+\frac {x^4}{4}+\frac {x^4}{16 \left (1-e^x\right )^2}-\frac {x^4}{4 \left (1-e^x\right )}-\frac {3 \text {Li}_3\left (e^x\right )}{2}-\frac {9 \text {Li}_4\left (e^x\right )}{2}-3 \text {Li}_5\left (e^x\right )+\frac {3}{2} \operatorname {Subst}\left (\int \frac {\text {Li}_2(x)}{x} \, dx,x,e^x\right )+\frac {3}{2} \operatorname {Subst}\left (\int \frac {\text {Li}_3(x)}{x} \, dx,x,e^x\right )+3 \operatorname {Subst}\left (\int \frac {\text {Li}_3(x)}{x} \, dx,x,e^x\right )+3 \operatorname {Subst}\left (\int \frac {\text {Li}_4(x)}{x} \, dx,x,e^x\right )\\ &=\frac {5 x}{4}+\frac {3 x^2}{4}-\frac {x^2}{4 \left (1-e^x\right )}+\frac {3 x^3}{4}+\frac {x^3}{16 \left (1-e^x\right )^2}-\frac {x^3}{2 \left (1-e^x\right )}+\frac {x^4}{4}+\frac {x^4}{16 \left (1-e^x\right )^2}-\frac {x^4}{4 \left (1-e^x\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 64, normalized size = 1.94 \begin {gather*} \frac {1}{16} \left (20 x+12 x^2+12 x^3+4 x^4-\frac {-x^3-x^4}{\left (-1+e^x\right )^2}+\frac {4 \left (x^2+2 x^3+x^4\right )}{-1+e^x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.70, size = 75, normalized size = 2.27 \begin {gather*} \frac {x^{4} + 5 \, x^{3} + 8 \, x^{2} + 4 \, {\left (x^{4} + 3 \, x^{3} + 3 \, x^{2} + 5 \, x\right )} e^{\left (2 \, x\right )} - 4 \, {\left (x^{4} + 4 \, x^{3} + 5 \, x^{2} + 10 \, x\right )} e^{x} + 20 \, x}{16 \, {\left (e^{\left (2 \, x\right )} - 2 \, e^{x} + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.24, size = 91, normalized size = 2.76 \begin {gather*} \frac {4 \, x^{4} e^{\left (2 \, x\right )} - 4 \, x^{4} e^{x} + x^{4} + 12 \, x^{3} e^{\left (2 \, x\right )} - 16 \, x^{3} e^{x} + 5 \, x^{3} + 12 \, x^{2} e^{\left (2 \, x\right )} - 20 \, x^{2} e^{x} + 8 \, x^{2} + 20 \, x e^{\left (2 \, x\right )} - 40 \, x e^{x} + 20 \, x}{16 \, {\left (e^{\left (2 \, x\right )} - 2 \, e^{x} + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.22, size = 57, normalized size = 1.73
method | result | size |
risch | \(\frac {x^{4}}{4}+\frac {3 x^{3}}{4}+\frac {3 x^{2}}{4}+\frac {5 x}{4}+\frac {x^{2} \left (4 \,{\mathrm e}^{x} x^{2}-3 x^{2}+8 \,{\mathrm e}^{x} x -7 x +4 \,{\mathrm e}^{x}-4\right )}{16 \left ({\mathrm e}^{x}-1\right )^{2}}\) | \(57\) |
norman | \(\frac {\frac {5 x}{4}+\frac {x^{2}}{2}+\frac {5 x^{3}}{16}+\frac {x^{4}}{16}+\frac {5 x \,{\mathrm e}^{2 x}}{4}-\frac {5 \,{\mathrm e}^{x} x}{2}-\frac {5 \,{\mathrm e}^{x} x^{2}}{4}-{\mathrm e}^{x} x^{3}-\frac {{\mathrm e}^{x} x^{4}}{4}+\frac {3 \,{\mathrm e}^{2 x} x^{2}}{4}+\frac {3 \,{\mathrm e}^{2 x} x^{3}}{4}+\frac {{\mathrm e}^{2 x} x^{4}}{4}}{\left ({\mathrm e}^{x}-1\right )^{2}}\) | \(87\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.67, size = 92, normalized size = 2.79 \begin {gather*} \frac {5}{4} \, x + \frac {x^{4} + 5 \, x^{3} + 8 \, x^{2} + 4 \, {\left (x^{4} + 3 \, x^{3} + 3 \, x^{2}\right )} e^{\left (2 \, x\right )} - 4 \, {\left (x^{4} + 4 \, x^{3} + 5 \, x^{2} - 5\right )} e^{x} - 30}{16 \, {\left (e^{\left (2 \, x\right )} - 2 \, e^{x} + 1\right )}} - \frac {5 \, {\left (2 \, e^{x} - 3\right )}}{8 \, {\left (e^{\left (2 \, x\right )} - 2 \, e^{x} + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.17, size = 92, normalized size = 2.79 \begin {gather*} \frac {20\,x+20\,x\,{\mathrm {e}}^{2\,x}-20\,x^2\,{\mathrm {e}}^x-16\,x^3\,{\mathrm {e}}^x-4\,x^4\,{\mathrm {e}}^x+12\,x^2\,{\mathrm {e}}^{2\,x}+12\,x^3\,{\mathrm {e}}^{2\,x}+4\,x^4\,{\mathrm {e}}^{2\,x}-40\,x\,{\mathrm {e}}^x+8\,x^2+5\,x^3+x^4}{16\,{\mathrm {e}}^{2\,x}-32\,{\mathrm {e}}^x+16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.18, size = 70, normalized size = 2.12 \begin {gather*} \frac {x^{4}}{4} + \frac {3 x^{3}}{4} + \frac {3 x^{2}}{4} + \frac {5 x}{4} + \frac {- 3 x^{4} - 7 x^{3} - 4 x^{2} + \left (4 x^{4} + 8 x^{3} + 4 x^{2}\right ) e^{x}}{16 e^{2 x} - 32 e^{x} + 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________