Optimal. Leaf size=26 \[ x-\frac {25 \left (x-\frac {6-x+\log (x)}{x}\right )^2}{\log \left (x^2\right )} \]
________________________________________________________________________________________
Rubi [F] time = 1.40, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1800-600 x-550 x^2+100 x^3+50 x^4+\left (600-100 x-100 x^2\right ) \log (x)+50 \log ^2(x)+\left (1500-250 x+50 x^2-50 x^3-50 x^4+(550-50 x) \log (x)+50 \log ^2(x)\right ) \log \left (x^2\right )+x^3 \log ^2\left (x^2\right )}{x^3 \log ^2\left (x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1+\frac {50 \left (-6+x+x^2-\log (x)\right )^2}{x^3 \log ^2\left (x^2\right )}-\frac {50 \left (-6+x+x^2-\log (x)\right ) \left (5+x^2+\log (x)\right )}{x^3 \log \left (x^2\right )}\right ) \, dx\\ &=x+50 \int \frac {\left (-6+x+x^2-\log (x)\right )^2}{x^3 \log ^2\left (x^2\right )} \, dx-50 \int \frac {\left (-6+x+x^2-\log (x)\right ) \left (5+x^2+\log (x)\right )}{x^3 \log \left (x^2\right )} \, dx\\ &=x+50 \int \left (\frac {2}{\log ^2\left (x^2\right )}+\frac {36}{x^3 \log ^2\left (x^2\right )}-\frac {12}{x^2 \log ^2\left (x^2\right )}-\frac {11}{x \log ^2\left (x^2\right )}+\frac {x}{\log ^2\left (x^2\right )}+\frac {12 \log (x)}{x^3 \log ^2\left (x^2\right )}-\frac {2 \log (x)}{x^2 \log ^2\left (x^2\right )}-\frac {2 \log (x)}{x \log ^2\left (x^2\right )}+\frac {\log ^2(x)}{x^3 \log ^2\left (x^2\right )}\right ) \, dx-50 \int \left (\frac {1}{\log \left (x^2\right )}-\frac {30}{x^3 \log \left (x^2\right )}+\frac {5}{x^2 \log \left (x^2\right )}-\frac {1}{x \log \left (x^2\right )}+\frac {x}{\log \left (x^2\right )}-\frac {11 \log (x)}{x^3 \log \left (x^2\right )}+\frac {\log (x)}{x^2 \log \left (x^2\right )}-\frac {\log ^2(x)}{x^3 \log \left (x^2\right )}\right ) \, dx\\ &=x+50 \int \frac {x}{\log ^2\left (x^2\right )} \, dx+50 \int \frac {\log ^2(x)}{x^3 \log ^2\left (x^2\right )} \, dx-50 \int \frac {1}{\log \left (x^2\right )} \, dx+50 \int \frac {1}{x \log \left (x^2\right )} \, dx-50 \int \frac {x}{\log \left (x^2\right )} \, dx-50 \int \frac {\log (x)}{x^2 \log \left (x^2\right )} \, dx+50 \int \frac {\log ^2(x)}{x^3 \log \left (x^2\right )} \, dx+100 \int \frac {1}{\log ^2\left (x^2\right )} \, dx-100 \int \frac {\log (x)}{x^2 \log ^2\left (x^2\right )} \, dx-100 \int \frac {\log (x)}{x \log ^2\left (x^2\right )} \, dx-250 \int \frac {1}{x^2 \log \left (x^2\right )} \, dx-550 \int \frac {1}{x \log ^2\left (x^2\right )} \, dx+550 \int \frac {\log (x)}{x^3 \log \left (x^2\right )} \, dx-600 \int \frac {1}{x^2 \log ^2\left (x^2\right )} \, dx+600 \int \frac {\log (x)}{x^3 \log ^2\left (x^2\right )} \, dx+1500 \int \frac {1}{x^3 \log \left (x^2\right )} \, dx+1800 \int \frac {1}{x^3 \log ^2\left (x^2\right )} \, dx\\ &=x-25 \text {Ei}\left (-\log \left (x^2\right )\right ) \log (x)-\frac {900}{x^2 \log \left (x^2\right )}+\frac {300}{x \log \left (x^2\right )}-\frac {50 x}{\log \left (x^2\right )}-\frac {25 x^2}{\log \left (x^2\right )}+\frac {50 \log (x)}{\log \left (x^2\right )}-\frac {300 \log (x)}{x^2 \log \left (x^2\right )}+\frac {50 \log (x)}{x \log \left (x^2\right )}+25 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log \left (x^2\right )\right )-25 \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,x^2\right )+50 \int \frac {\text {Ei}\left (-\frac {1}{2} \log \left (x^2\right )\right )}{2 \sqrt {x^2}} \, dx+50 \int \frac {\log ^2(x)}{x^3 \log ^2\left (x^2\right )} \, dx+50 \int \frac {1}{\log \left (x^2\right )} \, dx+50 \int \frac {x}{\log \left (x^2\right )} \, dx+50 \int \frac {\log ^2(x)}{x^3 \log \left (x^2\right )} \, dx+100 \int \left (-\frac {\text {Ei}\left (-\frac {1}{2} \log \left (x^2\right )\right )}{4 \sqrt {x^2}}-\frac {1}{2 x^2 \log \left (x^2\right )}\right ) \, dx+100 \int -\frac {1}{2 x \log \left (x^2\right )} \, dx-275 \operatorname {Subst}\left (\int \frac {1}{x^2} \, dx,x,\log \left (x^2\right )\right )+300 \int \frac {1}{x^2 \log \left (x^2\right )} \, dx-550 \int \frac {\text {Ei}\left (-\log \left (x^2\right )\right )}{2 x} \, dx-600 \int \frac {-x^2 \text {Ei}\left (-\log \left (x^2\right )\right )-\frac {1}{\log \left (x^2\right )}}{2 x^3} \, dx+750 \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log \left (x^2\right )\right )-1800 \int \frac {1}{x^3 \log \left (x^2\right )} \, dx-\frac {(25 x) \operatorname {Subst}\left (\int \frac {e^{x/2}}{x} \, dx,x,\log \left (x^2\right )\right )}{\sqrt {x^2}}-\frac {\left (125 \sqrt {x^2}\right ) \operatorname {Subst}\left (\int \frac {e^{-x/2}}{x} \, dx,x,\log \left (x^2\right )\right )}{x}\\ &=x+750 \text {Ei}\left (-\log \left (x^2\right )\right )-\frac {125 \sqrt {x^2} \text {Ei}\left (-\frac {1}{2} \log \left (x^2\right )\right )}{x}-\frac {25 x \text {Ei}\left (\frac {\log \left (x^2\right )}{2}\right )}{\sqrt {x^2}}-25 \text {Ei}\left (-\log \left (x^2\right )\right ) \log (x)+\frac {275}{\log \left (x^2\right )}-\frac {900}{x^2 \log \left (x^2\right )}+\frac {300}{x \log \left (x^2\right )}-\frac {50 x}{\log \left (x^2\right )}-\frac {25 x^2}{\log \left (x^2\right )}+\frac {50 \log (x)}{\log \left (x^2\right )}-\frac {300 \log (x)}{x^2 \log \left (x^2\right )}+\frac {50 \log (x)}{x \log \left (x^2\right )}+25 \log \left (\log \left (x^2\right )\right )-25 \text {li}\left (x^2\right )+25 \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,x^2\right )+50 \int \frac {\log ^2(x)}{x^3 \log ^2\left (x^2\right )} \, dx-50 \int \frac {1}{x^2 \log \left (x^2\right )} \, dx-50 \int \frac {1}{x \log \left (x^2\right )} \, dx+50 \int \frac {\log ^2(x)}{x^3 \log \left (x^2\right )} \, dx-275 \int \frac {\text {Ei}\left (-\log \left (x^2\right )\right )}{x} \, dx-300 \int \frac {-x^2 \text {Ei}\left (-\log \left (x^2\right )\right )-\frac {1}{\log \left (x^2\right )}}{x^3} \, dx-900 \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log \left (x^2\right )\right )+\frac {(25 x) \operatorname {Subst}\left (\int \frac {e^{x/2}}{x} \, dx,x,\log \left (x^2\right )\right )}{\sqrt {x^2}}+\frac {\left (150 \sqrt {x^2}\right ) \operatorname {Subst}\left (\int \frac {e^{-x/2}}{x} \, dx,x,\log \left (x^2\right )\right )}{x}\\ &=x-150 \text {Ei}\left (-\log \left (x^2\right )\right )+\frac {25 \sqrt {x^2} \text {Ei}\left (-\frac {1}{2} \log \left (x^2\right )\right )}{x}-25 \text {Ei}\left (-\log \left (x^2\right )\right ) \log (x)+\frac {275}{\log \left (x^2\right )}-\frac {900}{x^2 \log \left (x^2\right )}+\frac {300}{x \log \left (x^2\right )}-\frac {50 x}{\log \left (x^2\right )}-\frac {25 x^2}{\log \left (x^2\right )}+\frac {50 \log (x)}{\log \left (x^2\right )}-\frac {300 \log (x)}{x^2 \log \left (x^2\right )}+\frac {50 \log (x)}{x \log \left (x^2\right )}+25 \log \left (\log \left (x^2\right )\right )-25 \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,\log \left (x^2\right )\right )+50 \int \frac {\log ^2(x)}{x^3 \log ^2\left (x^2\right )} \, dx+50 \int \frac {\log ^2(x)}{x^3 \log \left (x^2\right )} \, dx-\frac {275}{2} \operatorname {Subst}\left (\int \text {Ei}(-x) \, dx,x,\log \left (x^2\right )\right )-300 \int \left (-\frac {\text {Ei}\left (-\log \left (x^2\right )\right )}{x}-\frac {1}{x^3 \log \left (x^2\right )}\right ) \, dx-\frac {\left (25 \sqrt {x^2}\right ) \operatorname {Subst}\left (\int \frac {e^{-x/2}}{x} \, dx,x,\log \left (x^2\right )\right )}{x}\\ &=-\frac {275}{2 x^2}+x-150 \text {Ei}\left (-\log \left (x^2\right )\right )-25 \text {Ei}\left (-\log \left (x^2\right )\right ) \log (x)+\frac {275}{\log \left (x^2\right )}-\frac {900}{x^2 \log \left (x^2\right )}+\frac {300}{x \log \left (x^2\right )}-\frac {50 x}{\log \left (x^2\right )}-\frac {25 x^2}{\log \left (x^2\right )}+\frac {50 \log (x)}{\log \left (x^2\right )}-\frac {300 \log (x)}{x^2 \log \left (x^2\right )}+\frac {50 \log (x)}{x \log \left (x^2\right )}-\frac {275}{2} \text {Ei}\left (-\log \left (x^2\right )\right ) \log \left (x^2\right )+50 \int \frac {\log ^2(x)}{x^3 \log ^2\left (x^2\right )} \, dx+50 \int \frac {\log ^2(x)}{x^3 \log \left (x^2\right )} \, dx+300 \int \frac {\text {Ei}\left (-\log \left (x^2\right )\right )}{x} \, dx+300 \int \frac {1}{x^3 \log \left (x^2\right )} \, dx\\ &=-\frac {275}{2 x^2}+x-150 \text {Ei}\left (-\log \left (x^2\right )\right )-25 \text {Ei}\left (-\log \left (x^2\right )\right ) \log (x)+\frac {275}{\log \left (x^2\right )}-\frac {900}{x^2 \log \left (x^2\right )}+\frac {300}{x \log \left (x^2\right )}-\frac {50 x}{\log \left (x^2\right )}-\frac {25 x^2}{\log \left (x^2\right )}+\frac {50 \log (x)}{\log \left (x^2\right )}-\frac {300 \log (x)}{x^2 \log \left (x^2\right )}+\frac {50 \log (x)}{x \log \left (x^2\right )}-\frac {275}{2} \text {Ei}\left (-\log \left (x^2\right )\right ) \log \left (x^2\right )+50 \int \frac {\log ^2(x)}{x^3 \log ^2\left (x^2\right )} \, dx+50 \int \frac {\log ^2(x)}{x^3 \log \left (x^2\right )} \, dx+150 \operatorname {Subst}\left (\int \frac {e^{-x}}{x} \, dx,x,\log \left (x^2\right )\right )+150 \operatorname {Subst}\left (\int \text {Ei}(-x) \, dx,x,\log \left (x^2\right )\right )\\ &=\frac {25}{2 x^2}+x-25 \text {Ei}\left (-\log \left (x^2\right )\right ) \log (x)+\frac {275}{\log \left (x^2\right )}-\frac {900}{x^2 \log \left (x^2\right )}+\frac {300}{x \log \left (x^2\right )}-\frac {50 x}{\log \left (x^2\right )}-\frac {25 x^2}{\log \left (x^2\right )}+\frac {50 \log (x)}{\log \left (x^2\right )}-\frac {300 \log (x)}{x^2 \log \left (x^2\right )}+\frac {50 \log (x)}{x \log \left (x^2\right )}+\frac {25}{2} \text {Ei}\left (-\log \left (x^2\right )\right ) \log \left (x^2\right )+50 \int \frac {\log ^2(x)}{x^3 \log ^2\left (x^2\right )} \, dx+50 \int \frac {\log ^2(x)}{x^3 \log \left (x^2\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 48, normalized size = 1.85 \begin {gather*} \frac {-25 \left (-6+x+x^2\right )^2+50 \left (-6+x+x^2\right ) \log (x)-25 \log ^2(x)+(-25+x) x^2 \log \left (x^2\right )}{x^2 \log \left (x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 47, normalized size = 1.81 \begin {gather*} -\frac {25 \, x^{4} + 50 \, x^{3} - 275 \, x^{2} - 2 \, {\left (x^{3} + 25 \, x - 150\right )} \log \relax (x) + 25 \, \log \relax (x)^{2} - 300 \, x + 900}{2 \, x^{2} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 44, normalized size = 1.69 \begin {gather*} x + \frac {25 \, {\left (x - 6\right )}}{x^{2}} - \frac {25 \, \log \relax (x)}{2 \, x^{2}} - \frac {25 \, {\left (x^{4} + 2 \, x^{3} - 11 \, x^{2} - 12 \, x + 36\right )}}{2 \, x^{2} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.10, size = 406, normalized size = 15.62
method | result | size |
risch | \(-\frac {25 \ln \relax (x )}{2 x^{2}}+\frac {-25 i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+50 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-25 i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+8 x^{3}+200 x -1200}{8 x^{2}}-\frac {25 i \left (-\pi ^{2} \mathrm {csgn}\left (i x \right )^{4} \mathrm {csgn}\left (i x^{2}\right )^{2}+4 \pi ^{2} \mathrm {csgn}\left (i x \right )^{3} \mathrm {csgn}\left (i x^{2}\right )^{3}-6 \pi ^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )^{4}+4 \pi ^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{5}-\pi ^{2} \mathrm {csgn}\left (i x^{2}\right )^{6}+16 i \pi \,x^{2} \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+48 i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-8 i \pi \,x^{2} \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-8 i \pi x \mathrm {csgn}\left (i x^{2}\right )^{3}-96 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-8 i \pi \,x^{2} \mathrm {csgn}\left (i x^{2}\right )^{3}-8 i \pi x \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+48 i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+16 i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+16 x^{4}+32 x^{3}-176 x^{2}-192 x +576\right )}{8 x^{2} \left (\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}+4 i \ln \relax (x )\right )}\) | \(406\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 40, normalized size = 1.54 \begin {gather*} x - \frac {25 \, {\left (x^{4} + 2 \, x^{3} - 11 \, x^{2} - 2 \, {\left (x - 6\right )} \log \relax (x) + \log \relax (x)^{2} - 12 \, x + 36\right )}}{2 \, x^{2} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.12, size = 103, normalized size = 3.96 \begin {gather*} x-\frac {50\,x}{\ln \left (x^2\right )}+\frac {275}{\ln \left (x^2\right )}+\frac {300}{x\,\ln \left (x^2\right )}-\frac {900}{x^2\,\ln \left (x^2\right )}-\frac {25\,x^2}{\ln \left (x^2\right )}+\frac {50\,\ln \relax (x)}{\ln \left (x^2\right )}-\frac {25\,{\ln \relax (x)}^2}{x^2\,\ln \left (x^2\right )}+\frac {50\,\ln \relax (x)}{x\,\ln \left (x^2\right )}-\frac {300\,\ln \relax (x)}{x^2\,\ln \left (x^2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 48, normalized size = 1.85 \begin {gather*} x + \frac {25 x - 150}{x^{2}} + \frac {- 25 x^{4} - 50 x^{3} + 275 x^{2} + 300 x - 900}{2 x^{2} \log {\relax (x )}} - \frac {25 \log {\relax (x )}}{2 x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________