Optimal. Leaf size=15 \[ \frac {1}{4} \left (3+e^2+x+x^2\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.01, antiderivative size = 41, normalized size of antiderivative = 2.73, number of steps used = 2, number of rules used = 1, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.036, Rules used = {12} \begin {gather*} \frac {x^4}{4}+\frac {x^3}{2}+\frac {7 x^2}{4}+\frac {3 x}{2}+\frac {1}{8} e^2 (2 x+1)^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \left (3+7 x+3 x^2+2 x^3+e^2 (1+2 x)\right ) \, dx\\ &=\frac {3 x}{2}+\frac {7 x^2}{4}+\frac {x^3}{2}+\frac {x^4}{4}+\frac {1}{8} e^2 (1+2 x)^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.00, size = 19, normalized size = 1.27 \begin {gather*} \frac {1}{4} x (1+x) \left (6+2 e^2+x+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.46, size = 28, normalized size = 1.87 \begin {gather*} \frac {1}{4} \, x^{4} + \frac {1}{2} \, x^{3} + \frac {7}{4} \, x^{2} + \frac {1}{2} \, {\left (x^{2} + x\right )} e^{2} + \frac {3}{2} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.20, size = 28, normalized size = 1.87 \begin {gather*} \frac {1}{4} \, x^{4} + \frac {1}{2} \, x^{3} + \frac {7}{4} \, x^{2} + \frac {1}{2} \, {\left (x^{2} + x\right )} e^{2} + \frac {3}{2} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.02, size = 26, normalized size = 1.73
method | result | size |
gosper | \(\frac {x \left (x^{3}+2 \,{\mathrm e}^{2} x +2 x^{2}+2 \,{\mathrm e}^{2}+7 x +6\right )}{4}\) | \(26\) |
default | \(\frac {\left (x^{2}+x \right ) {\mathrm e}^{2}}{2}+\frac {x^{4}}{4}+\frac {x^{3}}{2}+\frac {7 x^{2}}{4}+\frac {3 x}{2}\) | \(29\) |
norman | \(\left (\frac {7}{4}+\frac {{\mathrm e}^{2}}{2}\right ) x^{2}+\left (\frac {{\mathrm e}^{2}}{2}+\frac {3}{2}\right ) x +\frac {x^{3}}{2}+\frac {x^{4}}{4}\) | \(30\) |
risch | \(\frac {x^{2} {\mathrm e}^{2}}{2}+\frac {{\mathrm e}^{2} x}{2}+\frac {x^{4}}{4}+\frac {x^{3}}{2}+\frac {7 x^{2}}{4}+\frac {3 x}{2}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 28, normalized size = 1.87 \begin {gather*} \frac {1}{4} \, x^{4} + \frac {1}{2} \, x^{3} + \frac {7}{4} \, x^{2} + \frac {1}{2} \, {\left (x^{2} + x\right )} e^{2} + \frac {3}{2} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.95, size = 29, normalized size = 1.93 \begin {gather*} \frac {x^4}{4}+\frac {x^3}{2}+\left (\frac {{\mathrm {e}}^2}{2}+\frac {7}{4}\right )\,x^2+\left (\frac {{\mathrm {e}}^2}{2}+\frac {3}{2}\right )\,x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.06, size = 31, normalized size = 2.07 \begin {gather*} \frac {x^{4}}{4} + \frac {x^{3}}{2} + x^{2} \left (\frac {7}{4} + \frac {e^{2}}{2}\right ) + x \left (\frac {3}{2} + \frac {e^{2}}{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________