Optimal. Leaf size=30 \[ 1+e^{\left (-e^{2 (-4+6 x)}+x+x^2+2 (3+x)\right )^2}-x \]
________________________________________________________________________________________
Rubi [A] time = 3.72, antiderivative size = 38, normalized size of antiderivative = 1.27, number of steps used = 3, number of rules used = 2, integrand size = 90, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.022, Rules used = {6741, 6706} \begin {gather*} e^{\frac {\left (e^8 x^2+3 e^8 x-e^{12 x}+6 e^8\right )^2}{e^{16}}}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6706
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-x+\int \exp \left (36+e^{-16+24 x}+36 x+21 x^2+6 x^3+x^4+e^{-8+12 x} \left (-12-6 x-2 x^2\right )\right ) \left (36+24 e^{-16+24 x}+42 x+18 x^2+4 x^3+e^{-8+12 x} \left (-150-76 x-24 x^2\right )\right ) \, dx\\ &=-x+\int e^{\frac {\left (6 e^8-e^{12 x}+3 e^8 x+e^8 x^2\right )^2}{e^{16}}} \left (36+24 e^{-16+24 x}+42 x+18 x^2+4 x^3+e^{-8+12 x} \left (-150-76 x-24 x^2\right )\right ) \, dx\\ &=e^{\frac {\left (6 e^8-e^{12 x}+3 e^8 x+e^8 x^2\right )^2}{e^{16}}}-x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 2.43, size = 31, normalized size = 1.03 \begin {gather*} e^{\frac {\left (e^{12 x}-e^8 \left (6+3 x+x^2\right )\right )^2}{e^{16}}}-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 45, normalized size = 1.50 \begin {gather*} -x + e^{\left (x^{4} + 6 \, x^{3} + 21 \, x^{2} - 2 \, {\left (x^{2} + 3 \, x + 6\right )} e^{\left (12 \, x - 8\right )} + 36 \, x + e^{\left (24 \, x - 16\right )} + 36\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.43, size = 57, normalized size = 1.90 \begin {gather*} -x + e^{\left (x^{4} + 6 \, x^{3} - 2 \, x^{2} e^{\left (12 \, x - 8\right )} + 21 \, x^{2} - 6 \, x e^{\left (12 \, x - 8\right )} + 36 \, x + e^{\left (24 \, x - 16\right )} - 12 \, e^{\left (12 \, x - 8\right )} + 36\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 49, normalized size = 1.63
method | result | size |
default | \(-x +{\mathrm e}^{{\mathrm e}^{24 x -16}+\left (-2 x^{2}-6 x -12\right ) {\mathrm e}^{12 x -8}+x^{4}+6 x^{3}+21 x^{2}+36 x +36}\) | \(49\) |
norman | \(-x +{\mathrm e}^{{\mathrm e}^{24 x -16}+\left (-2 x^{2}-6 x -12\right ) {\mathrm e}^{12 x -8}+x^{4}+6 x^{3}+21 x^{2}+36 x +36}\) | \(49\) |
risch | \(-x +{\mathrm e}^{x^{4}-2 \,{\mathrm e}^{12 x -8} x^{2}+6 x^{3}-6 \,{\mathrm e}^{12 x -8} x +21 x^{2}+{\mathrm e}^{24 x -16}-12 \,{\mathrm e}^{12 x -8}+36 x +36}\) | \(58\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.15, size = 57, normalized size = 1.90 \begin {gather*} -x + e^{\left (x^{4} + 6 \, x^{3} - 2 \, x^{2} e^{\left (12 \, x - 8\right )} + 21 \, x^{2} - 6 \, x e^{\left (12 \, x - 8\right )} + 36 \, x + e^{\left (24 \, x - 16\right )} - 12 \, e^{\left (12 \, x - 8\right )} + 36\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.26, size = 66, normalized size = 2.20 \begin {gather*} {\mathrm {e}}^{36\,x}\,{\mathrm {e}}^{x^4}\,{\mathrm {e}}^{-2\,x^2\,{\mathrm {e}}^{12\,x}\,{\mathrm {e}}^{-8}}\,{\mathrm {e}}^{36}\,{\mathrm {e}}^{-12\,{\mathrm {e}}^{12\,x}\,{\mathrm {e}}^{-8}}\,{\mathrm {e}}^{{\mathrm {e}}^{24\,x}\,{\mathrm {e}}^{-16}}\,{\mathrm {e}}^{6\,x^3}\,{\mathrm {e}}^{21\,x^2}\,{\mathrm {e}}^{-6\,x\,{\mathrm {e}}^{12\,x}\,{\mathrm {e}}^{-8}}-x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.32, size = 46, normalized size = 1.53 \begin {gather*} - x + e^{x^{4} + 6 x^{3} + 21 x^{2} + 36 x + \left (- 2 x^{2} - 6 x - 12\right ) e^{12 x - 8} + e^{24 x - 16} + 36} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________