Optimal. Leaf size=26 \[ (-5+x) \left (\frac {1}{3}+\log \left (-4+e^{\frac {2+\frac {4 \log (3)}{x}}{x}}\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 14.06, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4 x^3+e^{\frac {2 x+4 \log (3)}{x^2}} \left (30 x-6 x^2+x^3+(120-24 x) \log (3)\right )+\left (-12 x^3+3 e^{\frac {2 x+4 \log (3)}{x^2}} x^3\right ) \log \left (-4+e^{\frac {2 x+4 \log (3)}{x^2}}\right )}{-12 x^3+3 e^{\frac {2 x+4 \log (3)}{x^2}} x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 x^3-e^{\frac {2 x+4 \log (3)}{x^2}} \left (30 x-6 x^2+x^3+(120-24 x) \log (3)\right )-\left (-12 x^3+3 e^{\frac {2 x+4 \log (3)}{x^2}} x^3\right ) \log \left (-4+e^{\frac {2 x+4 \log (3)}{x^2}}\right )}{3 \left (4-81^{\frac {1}{x^2}} e^{2/x}\right ) x^3} \, dx\\ &=\frac {1}{3} \int \frac {4 x^3-e^{\frac {2 x+4 \log (3)}{x^2}} \left (30 x-6 x^2+x^3+(120-24 x) \log (3)\right )-\left (-12 x^3+3 e^{\frac {2 x+4 \log (3)}{x^2}} x^3\right ) \log \left (-4+e^{\frac {2 x+4 \log (3)}{x^2}}\right )}{\left (4-81^{\frac {1}{x^2}} e^{2/x}\right ) x^3} \, dx\\ &=\frac {1}{3} \int \left (-\frac {4 \left (1+3 \log \left (-4+e^{\frac {2 (x+\log (9))}{x^2}}\right )\right )}{-4+81^{\frac {1}{x^2}} e^{2/x}}+\frac {81^{\frac {1}{x^2}} e^{2/x} \left (6 x^2-x^3-30 x \left (1-\frac {4 \log (3)}{5}\right )-120 \log (3)-3 x^3 \log \left (-4+e^{\frac {2 (x+\log (9))}{x^2}}\right )\right )}{\left (4-81^{\frac {1}{x^2}} e^{2/x}\right ) x^3}\right ) \, dx\\ &=\frac {1}{3} \int \frac {81^{\frac {1}{x^2}} e^{2/x} \left (6 x^2-x^3-30 x \left (1-\frac {4 \log (3)}{5}\right )-120 \log (3)-3 x^3 \log \left (-4+e^{\frac {2 (x+\log (9))}{x^2}}\right )\right )}{\left (4-81^{\frac {1}{x^2}} e^{2/x}\right ) x^3} \, dx-\frac {4}{3} \int \frac {1+3 \log \left (-4+e^{\frac {2 (x+\log (9))}{x^2}}\right )}{-4+81^{\frac {1}{x^2}} e^{2/x}} \, dx\\ &=\frac {1}{3} \int \left (\frac {81^{\frac {1}{x^2}} e^{2/x}}{-4+81^{\frac {1}{x^2}} e^{2/x}}-\frac {2\ 3^{1+\frac {4}{x^2}} e^{2/x}}{\left (-4+81^{\frac {1}{x^2}} e^{2/x}\right ) x}+\frac {40\ 3^{1+\frac {4}{x^2}} e^{2/x} \log (3)}{\left (-4+81^{\frac {1}{x^2}} e^{2/x}\right ) x^3}-\frac {2\ 3^{1+\frac {4}{x^2}} e^{2/x} (-5+\log (81))}{\left (-4+81^{\frac {1}{x^2}} e^{2/x}\right ) x^2}+\frac {3^{1+\frac {4}{x^2}} e^{2/x} \log \left (-4+e^{\frac {2 (x+\log (9))}{x^2}}\right )}{-4+81^{\frac {1}{x^2}} e^{2/x}}\right ) \, dx-\frac {4}{3} \int \left (\frac {1}{-4+81^{\frac {1}{x^2}} e^{2/x}}+\frac {3 \log \left (-4+e^{\frac {2 (x+\log (9))}{x^2}}\right )}{-4+81^{\frac {1}{x^2}} e^{2/x}}\right ) \, dx\\ &=\frac {1}{3} \int \frac {81^{\frac {1}{x^2}} e^{2/x}}{-4+81^{\frac {1}{x^2}} e^{2/x}} \, dx+\frac {1}{3} \int \frac {3^{1+\frac {4}{x^2}} e^{2/x} \log \left (-4+e^{\frac {2 (x+\log (9))}{x^2}}\right )}{-4+81^{\frac {1}{x^2}} e^{2/x}} \, dx-\frac {2}{3} \int \frac {3^{1+\frac {4}{x^2}} e^{2/x}}{\left (-4+81^{\frac {1}{x^2}} e^{2/x}\right ) x} \, dx-\frac {4}{3} \int \frac {1}{-4+81^{\frac {1}{x^2}} e^{2/x}} \, dx-4 \int \frac {\log \left (-4+e^{\frac {2 (x+\log (9))}{x^2}}\right )}{-4+81^{\frac {1}{x^2}} e^{2/x}} \, dx+\frac {1}{3} (40 \log (3)) \int \frac {3^{1+\frac {4}{x^2}} e^{2/x}}{\left (-4+81^{\frac {1}{x^2}} e^{2/x}\right ) x^3} \, dx+\frac {1}{3} (2 (5-\log (81))) \int \frac {3^{1+\frac {4}{x^2}} e^{2/x}}{\left (-4+81^{\frac {1}{x^2}} e^{2/x}\right ) x^2} \, dx\\ &=\frac {1}{3} \int \left (1+\frac {4}{-4+81^{\frac {1}{x^2}} e^{2/x}}\right ) \, dx-\frac {1}{3} \int \frac {2 e^{\frac {2 (x+\log (9))}{x^2}} (x+\log (81)) \int \frac {3^{1+\frac {4}{x^2}} e^{2/x}}{-4+81^{\frac {1}{x^2}} e^{2/x}} \, dx}{\left (4-e^{\frac {2 (x+\log (9))}{x^2}}\right ) x^3} \, dx-\frac {2}{3} \int \frac {3^{1+\frac {4}{x^2}} e^{2/x}}{\left (-4+81^{\frac {1}{x^2}} e^{2/x}\right ) x} \, dx-\frac {4}{3} \int \frac {1}{-4+81^{\frac {1}{x^2}} e^{2/x}} \, dx+4 \int \frac {2 e^{\frac {2 (x+\log (9))}{x^2}} (x+\log (81)) \int \frac {1}{-4+81^{\frac {1}{x^2}} e^{2/x}} \, dx}{\left (4-e^{\frac {2 (x+\log (9))}{x^2}}\right ) x^3} \, dx+\frac {1}{3} (40 \log (3)) \int \frac {3^{1+\frac {4}{x^2}} e^{2/x}}{\left (-4+81^{\frac {1}{x^2}} e^{2/x}\right ) x^3} \, dx-\frac {1}{3} (2 (5-\log (81))) \operatorname {Subst}\left (\int \frac {3^{1+4 x^2} e^{2 x}}{-4+81^{x^2} e^{2 x}} \, dx,x,\frac {1}{x}\right )+\frac {1}{3} \log \left (-4+e^{\frac {2 (x+\log (9))}{x^2}}\right ) \int \frac {3^{1+\frac {4}{x^2}} e^{2/x}}{-4+81^{\frac {1}{x^2}} e^{2/x}} \, dx-\left (4 \log \left (-4+e^{\frac {2 (x+\log (9))}{x^2}}\right )\right ) \int \frac {1}{-4+81^{\frac {1}{x^2}} e^{2/x}} \, dx\\ &=\frac {x}{3}-\frac {2}{3} \int \frac {3^{1+\frac {4}{x^2}} e^{2/x}}{\left (-4+81^{\frac {1}{x^2}} e^{2/x}\right ) x} \, dx-\frac {2}{3} \int \frac {e^{\frac {2 (x+\log (9))}{x^2}} (x+\log (81)) \int \frac {3^{1+\frac {4}{x^2}} e^{2/x}}{-4+81^{\frac {1}{x^2}} e^{2/x}} \, dx}{\left (4-e^{\frac {2 (x+\log (9))}{x^2}}\right ) x^3} \, dx+8 \int \frac {e^{\frac {2 (x+\log (9))}{x^2}} (x+\log (81)) \int \frac {1}{-4+81^{\frac {1}{x^2}} e^{2/x}} \, dx}{\left (4-e^{\frac {2 (x+\log (9))}{x^2}}\right ) x^3} \, dx+\frac {1}{3} (40 \log (3)) \int \frac {3^{1+\frac {4}{x^2}} e^{2/x}}{\left (-4+81^{\frac {1}{x^2}} e^{2/x}\right ) x^3} \, dx-\frac {1}{3} (2 (5-\log (81))) \operatorname {Subst}\left (\int \frac {3 e^{2 x+4 x^2 \log (3)}}{-4+81^{x^2} e^{2 x}} \, dx,x,\frac {1}{x}\right )+\frac {1}{3} \log \left (-4+e^{\frac {2 (x+\log (9))}{x^2}}\right ) \int \frac {3^{1+\frac {4}{x^2}} e^{2/x}}{-4+81^{\frac {1}{x^2}} e^{2/x}} \, dx-\left (4 \log \left (-4+e^{\frac {2 (x+\log (9))}{x^2}}\right )\right ) \int \frac {1}{-4+81^{\frac {1}{x^2}} e^{2/x}} \, dx\\ &=\frac {x}{3}-\frac {2}{3} \int \frac {3^{1+\frac {4}{x^2}} e^{2/x}}{\left (-4+81^{\frac {1}{x^2}} e^{2/x}\right ) x} \, dx-\frac {2}{3} \int \left (-\frac {e^{\frac {2 (x+\log (9))}{x^2}} (x+\log (81)) \int \frac {3^{1+\frac {4}{x^2}} e^{2/x}}{-4+81^{\frac {1}{x^2}} e^{2/x}} \, dx}{4 \left (-2+9^{\frac {1}{x^2}} e^{\frac {1}{x}}\right ) x^3}+\frac {e^{\frac {2 (x+\log (9))}{x^2}} (x+\log (81)) \int \frac {3^{1+\frac {4}{x^2}} e^{2/x}}{-4+81^{\frac {1}{x^2}} e^{2/x}} \, dx}{4 \left (2+9^{\frac {1}{x^2}} e^{\frac {1}{x}}\right ) x^3}\right ) \, dx+8 \int \left (-\frac {e^{\frac {2 (x+\log (9))}{x^2}} (x+\log (81)) \int \frac {1}{-4+81^{\frac {1}{x^2}} e^{2/x}} \, dx}{4 \left (-2+9^{\frac {1}{x^2}} e^{\frac {1}{x}}\right ) x^3}+\frac {e^{\frac {2 (x+\log (9))}{x^2}} (x+\log (81)) \int \frac {1}{-4+81^{\frac {1}{x^2}} e^{2/x}} \, dx}{4 \left (2+9^{\frac {1}{x^2}} e^{\frac {1}{x}}\right ) x^3}\right ) \, dx+\frac {1}{3} (40 \log (3)) \int \frac {3^{1+\frac {4}{x^2}} e^{2/x}}{\left (-4+81^{\frac {1}{x^2}} e^{2/x}\right ) x^3} \, dx-(2 (5-\log (81))) \operatorname {Subst}\left (\int \frac {e^{2 x+4 x^2 \log (3)}}{-4+81^{x^2} e^{2 x}} \, dx,x,\frac {1}{x}\right )+\frac {1}{3} \log \left (-4+e^{\frac {2 (x+\log (9))}{x^2}}\right ) \int \frac {3^{1+\frac {4}{x^2}} e^{2/x}}{-4+81^{\frac {1}{x^2}} e^{2/x}} \, dx-\left (4 \log \left (-4+e^{\frac {2 (x+\log (9))}{x^2}}\right )\right ) \int \frac {1}{-4+81^{\frac {1}{x^2}} e^{2/x}} \, dx\\ &=\frac {x}{3}+\frac {1}{6} \int \frac {e^{\frac {2 (x+\log (9))}{x^2}} (x+\log (81)) \int \frac {3^{1+\frac {4}{x^2}} e^{2/x}}{-4+81^{\frac {1}{x^2}} e^{2/x}} \, dx}{\left (-2+9^{\frac {1}{x^2}} e^{\frac {1}{x}}\right ) x^3} \, dx-\frac {1}{6} \int \frac {e^{\frac {2 (x+\log (9))}{x^2}} (x+\log (81)) \int \frac {3^{1+\frac {4}{x^2}} e^{2/x}}{-4+81^{\frac {1}{x^2}} e^{2/x}} \, dx}{\left (2+9^{\frac {1}{x^2}} e^{\frac {1}{x}}\right ) x^3} \, dx-\frac {2}{3} \int \frac {3^{1+\frac {4}{x^2}} e^{2/x}}{\left (-4+81^{\frac {1}{x^2}} e^{2/x}\right ) x} \, dx-2 \int \frac {e^{\frac {2 (x+\log (9))}{x^2}} (x+\log (81)) \int \frac {1}{-4+81^{\frac {1}{x^2}} e^{2/x}} \, dx}{\left (-2+9^{\frac {1}{x^2}} e^{\frac {1}{x}}\right ) x^3} \, dx+2 \int \frac {e^{\frac {2 (x+\log (9))}{x^2}} (x+\log (81)) \int \frac {1}{-4+81^{\frac {1}{x^2}} e^{2/x}} \, dx}{\left (2+9^{\frac {1}{x^2}} e^{\frac {1}{x}}\right ) x^3} \, dx+\frac {1}{3} (40 \log (3)) \int \frac {3^{1+\frac {4}{x^2}} e^{2/x}}{\left (-4+81^{\frac {1}{x^2}} e^{2/x}\right ) x^3} \, dx-(2 (5-\log (81))) \operatorname {Subst}\left (\int \frac {e^{2 x+4 x^2 \log (3)}}{-4+81^{x^2} e^{2 x}} \, dx,x,\frac {1}{x}\right )+\frac {1}{3} \log \left (-4+e^{\frac {2 (x+\log (9))}{x^2}}\right ) \int \frac {3^{1+\frac {4}{x^2}} e^{2/x}}{-4+81^{\frac {1}{x^2}} e^{2/x}} \, dx-\left (4 \log \left (-4+e^{\frac {2 (x+\log (9))}{x^2}}\right )\right ) \int \frac {1}{-4+81^{\frac {1}{x^2}} e^{2/x}} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 1.24, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {-4 x^3+e^{\frac {2 x+4 \log (3)}{x^2}} \left (30 x-6 x^2+x^3+(120-24 x) \log (3)\right )+\left (-12 x^3+3 e^{\frac {2 x+4 \log (3)}{x^2}} x^3\right ) \log \left (-4+e^{\frac {2 x+4 \log (3)}{x^2}}\right )}{-12 x^3+3 e^{\frac {2 x+4 \log (3)}{x^2}} x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.15, size = 23, normalized size = 0.88 \begin {gather*} {\left (x - 5\right )} \log \left (e^{\left (\frac {2 \, {\left (x + 2 \, \log \relax (3)\right )}}{x^{2}}\right )} - 4\right ) + \frac {1}{3} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.48, size = 38, normalized size = 1.46 \begin {gather*} x \log \left (e^{\left (\frac {2 \, {\left (x + 2 \, \log \relax (3)\right )}}{x^{2}}\right )} - 4\right ) + \frac {1}{3} \, x - 5 \, \log \left (e^{\left (\frac {2 \, {\left (x + 2 \, \log \relax (3)\right )}}{x^{2}}\right )} - 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 39, normalized size = 1.50
method | result | size |
risch | \(x \ln \left (81^{\frac {1}{x^{2}}} {\mathrm e}^{\frac {2}{x}}-4\right )+\frac {x}{3}-5 \ln \left (81^{\frac {1}{x^{2}}} {\mathrm e}^{\frac {2}{x}}-4\right )\) | \(39\) |
norman | \(\frac {x^{3} \ln \left ({\mathrm e}^{\frac {4 \ln \relax (3)+2 x}{x^{2}}}-4\right )-5 x^{2} \ln \left ({\mathrm e}^{\frac {4 \ln \relax (3)+2 x}{x^{2}}}-4\right )+\frac {x^{3}}{3}}{x^{2}}\) | \(52\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.73, size = 99, normalized size = 3.81 \begin {gather*} \frac {3 \, x^{2} \log \left (e^{\left (\frac {1}{x} + \frac {2 \, \log \relax (3)}{x^{2}}\right )} + 2\right ) + 3 \, x^{2} \log \left (e^{\left (\frac {1}{x} + \frac {2 \, \log \relax (3)}{x^{2}}\right )} - 2\right ) + x^{2} - 30}{3 \, x} - 5 \, \log \left ({\left (e^{\left (\frac {1}{x} + \frac {2 \, \log \relax (3)}{x^{2}}\right )} + 2\right )} e^{\left (-\frac {1}{x}\right )}\right ) - 5 \, \log \left ({\left (e^{\left (\frac {1}{x} + \frac {2 \, \log \relax (3)}{x^{2}}\right )} - 2\right )} e^{\left (-\frac {1}{x}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.25, size = 42, normalized size = 1.62 \begin {gather*} \frac {x}{3}-5\,\ln \left (3^{\frac {4}{x^2}}\,{\mathrm {e}}^{2/x}-4\right )+x\,\ln \left (3^{\frac {4}{x^2}}\,{\mathrm {e}}^{2/x}-4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.57, size = 39, normalized size = 1.50 \begin {gather*} x \log {\left (e^{\frac {2 x + 4 \log {\relax (3 )}}{x^{2}}} - 4 \right )} + \frac {x}{3} - 5 \log {\left (e^{\frac {2 x + 4 \log {\relax (3 )}}{x^{2}}} - 4 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________