Optimal. Leaf size=34 \[ x^2 \left (e^{-5+\frac {1}{2} e^{\frac {3}{\log \left (\frac {4}{x}\right )}}}+x^2\right ) (x-\log (x)) \]
________________________________________________________________________________________
Rubi [A] time = 0.68, antiderivative size = 41, normalized size of antiderivative = 1.21, number of steps used = 5, number of rules used = 4, integrand size = 125, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.032, Rules used = {12, 6688, 2288, 2304} \begin {gather*} x^5-x^4 \log (x)+x^2 e^{\frac {1}{2} \left (e^{\frac {3}{\log \left (\frac {4}{x}\right )}}-10\right )} (x-\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rule 2304
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {\left (-2 x^3+10 x^4\right ) \log ^2\left (\frac {4}{x}\right )-8 x^3 \log ^2\left (\frac {4}{x}\right ) \log (x)+e^{\frac {1}{2} \left (-10+e^{\frac {3}{\log \left (\frac {4}{x}\right )}}\right )} \left (\left (-2 x+6 x^2\right ) \log ^2\left (\frac {4}{x}\right )-4 x \log ^2\left (\frac {4}{x}\right ) \log (x)+e^{\frac {3}{\log \left (\frac {4}{x}\right )}} \left (3 x^2-3 x \log (x)\right )\right )}{\log ^2\left (\frac {4}{x}\right )} \, dx\\ &=\frac {1}{2} \int \left (-2 x^3+10 x^4+\frac {e^{\frac {1}{2} \left (-10+e^{\frac {3}{\log \left (\frac {4}{x}\right )}}\right )} x \left (\log ^2\left (\frac {4}{x}\right ) (-2+6 x-4 \log (x))+3 e^{\frac {3}{\log \left (\frac {4}{x}\right )}} (x-\log (x))\right )}{\log ^2\left (\frac {4}{x}\right )}-8 x^3 \log (x)\right ) \, dx\\ &=-\frac {x^4}{4}+x^5+\frac {1}{2} \int \frac {e^{\frac {1}{2} \left (-10+e^{\frac {3}{\log \left (\frac {4}{x}\right )}}\right )} x \left (\log ^2\left (\frac {4}{x}\right ) (-2+6 x-4 \log (x))+3 e^{\frac {3}{\log \left (\frac {4}{x}\right )}} (x-\log (x))\right )}{\log ^2\left (\frac {4}{x}\right )} \, dx-4 \int x^3 \log (x) \, dx\\ &=x^5+e^{\frac {1}{2} \left (-10+e^{\frac {3}{\log \left (\frac {4}{x}\right )}}\right )} x^2 (x-\log (x))-x^4 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.25, size = 41, normalized size = 1.21 \begin {gather*} x^5+e^{-5+\frac {1}{2} e^{\frac {3}{\log \left (\frac {4}{x}\right )}}} x^2 (x-\log (x))-x^4 \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.04, size = 59, normalized size = 1.74 \begin {gather*} x^{5} - 2 \, x^{4} \log \relax (2) + x^{4} \log \left (\frac {4}{x}\right ) + {\left (x^{3} - 2 \, x^{2} \log \relax (2) + x^{2} \log \left (\frac {4}{x}\right )\right )} e^{\left (\frac {1}{2} \, e^{\frac {3}{\log \left (\frac {4}{x}\right )}} - 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.75, size = 60, normalized size = 1.76 \begin {gather*} x^{5} - x^{4} \log \relax (x) + x^{3} e^{\left (\frac {1}{2} \, e^{\left (\frac {3}{2 \, \log \relax (2) - \log \relax (x)}\right )} - 5\right )} - x^{2} e^{\left (\frac {1}{2} \, e^{\left (\frac {3}{2 \, \log \relax (2) - \log \relax (x)}\right )} - 5\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.66, size = 41, normalized size = 1.21
method | result | size |
risch | \(x^{5}-x^{4} \ln \relax (x )+x^{2} \left (x -\ln \relax (x )\right ) {\mathrm e}^{\frac {{\mathrm e}^{\frac {3}{2 \ln \relax (2)-\ln \relax (x )}}}{2}-5}\) | \(41\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x^{5} - x^{4} \log \relax (x) - \frac {1}{2} \, \int -\frac {{\left (3 \, x^{2} + 2 \, {\left (12 \, x^{2} \log \relax (2)^{2} - 2 \, x \log \relax (x)^{3} - 4 \, x \log \relax (2)^{2} + {\left (3 \, x^{2} + x {\left (8 \, \log \relax (2) - 1\right )}\right )} \log \relax (x)^{2} - 4 \, {\left (3 \, x^{2} \log \relax (2) + {\left (2 \, \log \relax (2)^{2} - \log \relax (2)\right )} x\right )} \log \relax (x)\right )} e^{\left (-\frac {3}{2 \, \log \relax (2) - \log \relax (x)}\right )} - 3 \, x \log \relax (x)\right )} e^{\left (\frac {3}{2 \, \log \relax (2) - \log \relax (x)} + \frac {1}{2} \, e^{\left (\frac {3}{2 \, \log \relax (2) - \log \relax (x)}\right )}\right )}}{4 \, e^{5} \log \relax (2)^{2} - 4 \, e^{5} \log \relax (2) \log \relax (x) + e^{5} \log \relax (x)^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.79, size = 41, normalized size = 1.21 \begin {gather*} x^5-x^4\,\ln \relax (x)-{\mathrm {e}}^{\frac {{\mathrm {e}}^{\frac {3}{\ln \left (\frac {4}{x}\right )}}}{2}-5}\,\left (x^2\,\ln \relax (x)-x^3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________