Optimal. Leaf size=36 \[ x \left (2+\frac {1-x}{x}-\frac {e^{\frac {4}{-2+e^4+\log \left (4 x^2\right )}}}{\log (x)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 4.10, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (4-4 e^4+e^8\right ) \log ^2(x)+\left (-4+2 e^4\right ) \log ^2(x) \log \left (4 x^2\right )+\log ^2(x) \log ^2\left (4 x^2\right )+e^{\frac {4}{-2+e^4+\log \left (4 x^2\right )}} \left (4-4 e^4+e^8+\left (4+4 e^4-e^8\right ) \log (x)+\left (-4+2 e^4+\left (4-2 e^4\right ) \log (x)\right ) \log \left (4 x^2\right )+(1-\log (x)) \log ^2\left (4 x^2\right )\right )}{\left (4-4 e^4+e^8\right ) \log ^2(x)+\left (-4+2 e^4\right ) \log ^2(x) \log \left (4 x^2\right )+\log ^2(x) \log ^2\left (4 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (4-4 e^4+e^8\right ) \log ^2(x)+\left (-4+2 e^4\right ) \log ^2(x) \log \left (4 x^2\right )+\log ^2(x) \log ^2\left (4 x^2\right )+e^{\frac {4}{-2+e^4+\log \left (4 x^2\right )}} \left (4-4 e^4+e^8+\left (4+4 e^4-e^8\right ) \log (x)+\left (-4+2 e^4+\left (4-2 e^4\right ) \log (x)\right ) \log \left (4 x^2\right )+(1-\log (x)) \log ^2\left (4 x^2\right )\right )}{\log ^2(x) \left (2 \left (1-\frac {e^4}{2}\right )-\log \left (4 x^2\right )\right )^2} \, dx\\ &=\int \left (1+\frac {e^{\frac {4}{-2 \left (1-\frac {e^4}{2}\right )+\log \left (4 x^2\right )}} \left (4 \left (1+\frac {1}{4} e^4 \left (-4+e^4\right )\right )+4 \left (1+e^4-\frac {e^8}{4}\right ) \log (x)-4 \left (1-\frac {e^4}{2}\right ) \log \left (4 x^2\right )+4 \left (1-\frac {e^4}{2}\right ) \log (x) \log \left (4 x^2\right )+\log ^2\left (4 x^2\right )-\log (x) \log ^2\left (4 x^2\right )\right )}{\log ^2(x) \left (2 \left (1-\frac {e^4}{2}\right )-\log \left (4 x^2\right )\right )^2}\right ) \, dx\\ &=x+\int \frac {e^{\frac {4}{-2 \left (1-\frac {e^4}{2}\right )+\log \left (4 x^2\right )}} \left (4 \left (1+\frac {1}{4} e^4 \left (-4+e^4\right )\right )+4 \left (1+e^4-\frac {e^8}{4}\right ) \log (x)-4 \left (1-\frac {e^4}{2}\right ) \log \left (4 x^2\right )+4 \left (1-\frac {e^4}{2}\right ) \log (x) \log \left (4 x^2\right )+\log ^2\left (4 x^2\right )-\log (x) \log ^2\left (4 x^2\right )\right )}{\log ^2(x) \left (2 \left (1-\frac {e^4}{2}\right )-\log \left (4 x^2\right )\right )^2} \, dx\\ &=x+\int \frac {e^{\frac {4}{-2 \left (1-\frac {e^4}{2}\right )+\log \left (4 x^2\right )}} \left (\left (-2+e^4+\log \left (4 x^2\right )\right )^2-\log (x) \left (-4-4 e^4+e^8+2 \left (-2+e^4\right ) \log \left (4 x^2\right )+\log ^2\left (4 x^2\right )\right )\right )}{\log ^2(x) \left (2 \left (1-\frac {e^4}{2}\right )-\log \left (4 x^2\right )\right )^2} \, dx\\ &=x+\int \left (\frac {e^{\frac {4}{-2 \left (1-\frac {e^4}{2}\right )+\log \left (4 x^2\right )}} (1-\log (x))}{\log ^2(x)}+\frac {8 e^{\frac {4}{-2 \left (1-\frac {e^4}{2}\right )+\log \left (4 x^2\right )}}}{\log (x) \left (2 \left (1-\frac {e^4}{2}\right )-\log \left (4 x^2\right )\right )^2}\right ) \, dx\\ &=x+8 \int \frac {e^{\frac {4}{-2 \left (1-\frac {e^4}{2}\right )+\log \left (4 x^2\right )}}}{\log (x) \left (2 \left (1-\frac {e^4}{2}\right )-\log \left (4 x^2\right )\right )^2} \, dx+\int \frac {e^{\frac {4}{-2 \left (1-\frac {e^4}{2}\right )+\log \left (4 x^2\right )}} (1-\log (x))}{\log ^2(x)} \, dx\\ &=x+8 \int \frac {e^{\frac {4}{-2 \left (1-\frac {e^4}{2}\right )+\log \left (4 x^2\right )}}}{\log (x) \left (2 \left (1-\frac {e^4}{2}\right )-\log \left (4 x^2\right )\right )^2} \, dx+\int \left (\frac {e^{\frac {4}{-2 \left (1-\frac {e^4}{2}\right )+\log \left (4 x^2\right )}}}{\log ^2(x)}-\frac {e^{\frac {4}{-2 \left (1-\frac {e^4}{2}\right )+\log \left (4 x^2\right )}}}{\log (x)}\right ) \, dx\\ &=x+8 \int \frac {e^{\frac {4}{-2 \left (1-\frac {e^4}{2}\right )+\log \left (4 x^2\right )}}}{\log (x) \left (2 \left (1-\frac {e^4}{2}\right )-\log \left (4 x^2\right )\right )^2} \, dx+\int \frac {e^{\frac {4}{-2 \left (1-\frac {e^4}{2}\right )+\log \left (4 x^2\right )}}}{\log ^2(x)} \, dx-\int \frac {e^{\frac {4}{-2 \left (1-\frac {e^4}{2}\right )+\log \left (4 x^2\right )}}}{\log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 26, normalized size = 0.72 \begin {gather*} x-\frac {e^{\frac {4}{-2+e^4+\log \left (4 x^2\right )}} x}{\log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.66, size = 31, normalized size = 0.86 \begin {gather*} -\frac {x e^{\left (\frac {4}{e^{4} + 2 \, \log \relax (2) + 2 \, \log \relax (x) - 2}\right )} - x \log \relax (x)}{\log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.41, size = 76, normalized size = 2.11
method | result | size |
default | \(x +\frac {\left (2-{\mathrm e}^{4}-\ln \left (4 x^{2}\right )+2 \ln \relax (x )\right ) x \,{\mathrm e}^{\frac {4}{\ln \left (4 x^{2}\right )+{\mathrm e}^{4}-2}}-2 x \ln \relax (x ) {\mathrm e}^{\frac {4}{\ln \left (4 x^{2}\right )+{\mathrm e}^{4}-2}}}{\left (\ln \left (4 x^{2}\right )+{\mathrm e}^{4}-2\right ) \ln \relax (x )}\) | \(76\) |
risch | \(x -\frac {x \,{\mathrm e}^{\frac {8}{-i \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+2 i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}-i \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )+4 \ln \relax (x )+2 \,{\mathrm e}^{4}+4 \ln \relax (2)-4}}}{\ln \relax (x )}\) | \(78\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x - \int \frac {{\left (4 \, {\left (e^{4} + 2 \, \log \relax (2) - 3\right )} \log \relax (x)^{2} + 4 \, \log \relax (x)^{3} - 4 \, {\left (\log \relax (2) - 1\right )} e^{4} - 4 \, \log \relax (2)^{2} + {\left (4 \, {\left (\log \relax (2) - 2\right )} e^{4} + 4 \, \log \relax (2)^{2} + e^{8} - 16 \, \log \relax (2) + 4\right )} \log \relax (x) - e^{8} + 8 \, \log \relax (2) - 4\right )} e^{\left (\frac {4}{e^{4} + 2 \, \log \relax (2) + 2 \, \log \relax (x) - 2}\right )}}{4 \, {\left (e^{4} + 2 \, \log \relax (2) - 2\right )} \log \relax (x)^{3} + 4 \, \log \relax (x)^{4} + {\left (4 \, {\left (\log \relax (2) - 1\right )} e^{4} + 4 \, \log \relax (2)^{2} + e^{8} - 8 \, \log \relax (2) + 4\right )} \log \relax (x)^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.92, size = 24, normalized size = 0.67 \begin {gather*} x-\frac {x\,{\mathrm {e}}^{\frac {4}{{\mathrm {e}}^4+\ln \left (4\,x^2\right )-2}}}{\ln \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.72, size = 22, normalized size = 0.61 \begin {gather*} - \frac {x e^{\frac {4}{2 \log {\relax (x )} - 2 + \log {\relax (4 )} + e^{4}}}}{\log {\relax (x )}} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________