Optimal. Leaf size=28 \[ -x+25 (5+\log (2))^2 \left (8+x-\frac {x}{5 \log \left (x^2\right )}\right )^4 \]
________________________________________________________________________________________
Rubi [B] time = 0.96, antiderivative size = 222, normalized size of antiderivative = 7.93, number of steps used = 62, number of rules used = 12, integrand size = 315, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.038, Rules used = {6, 12, 6688, 2306, 2310, 2178, 2353, 2356, 2307, 2298, 2297, 2300} \begin {gather*} 25 x^4 (5+\log (2))^2+800 x^3 (5+\log (2))^2+\frac {384 x^2 (5+\log (2))^2}{\log ^2\left (x^2\right )}-\frac {3840 x^2 (5+\log (2))^2}{\log \left (x^2\right )}+9600 x^2 (5+\log (2))^2-\frac {10240 x (5+\log (2))^2}{\log \left (x^2\right )}+\frac {x^4 (5+\log (2))^2}{25 \log ^4\left (x^2\right )}-\frac {4 x^4 (5+\log (2))^2}{5 \log ^3\left (x^2\right )}+\frac {6 x^4 (5+\log (2))^2}{\log ^2\left (x^2\right )}-\frac {20 x^4 (5+\log (2))^2}{\log \left (x^2\right )}-\frac {32 x^3 (5+\log (2))^2}{5 \log ^3\left (x^2\right )}+\frac {96 x^3 (5+\log (2))^2}{\log ^2\left (x^2\right )}-\frac {480 x^3 (5+\log (2))^2}{\log \left (x^2\right )}+x \left (1279999+51200 \log ^2(2)+512000 \log (2)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 2178
Rule 2297
Rule 2298
Rule 2300
Rule 2306
Rule 2307
Rule 2310
Rule 2353
Rule 2356
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^3 (-200-80 \log (2))-8 x^3 \log ^2(2)+\left (24000 x^2+3100 x^3+\left (9600 x^2+1240 x^3\right ) \log (2)+\left (960 x^2+124 x^3\right ) \log ^2(2)\right ) \log \left (x^2\right )+\left (-960000 x-252000 x^2-17000 x^3+\left (-384000 x-100800 x^2-6800 x^3\right ) \log (2)+\left (-38400 x-10080 x^2-680 x^3\right ) \log ^2(2)\right ) \log ^2\left (x^2\right )+\left (12800000+5280000 x+780000 x^2+40000 x^3+\left (5120000+2112000 x+312000 x^2+16000 x^3\right ) \log (2)+\left (512000+211200 x+31200 x^2+1600 x^3\right ) \log ^2(2)\right ) \log ^3\left (x^2\right )+\left (-6400000-4800000 x-900000 x^2-50000 x^3+\left (-2560000-1920000 x-360000 x^2-20000 x^3\right ) \log (2)+\left (-256000-192000 x-36000 x^2-2000 x^3\right ) \log ^2(2)\right ) \log ^4\left (x^2\right )+\left (31999975+12000000 x+1500000 x^2+62500 x^3+\left (12800000+4800000 x+600000 x^2+25000 x^3\right ) \log (2)+\left (1280000+480000 x+60000 x^2+2500 x^3\right ) \log ^2(2)\right ) \log ^5\left (x^2\right )}{25 \log ^5\left (x^2\right )} \, dx\\ &=\int \frac {x^3 \left (-200-80 \log (2)-8 \log ^2(2)\right )+\left (24000 x^2+3100 x^3+\left (9600 x^2+1240 x^3\right ) \log (2)+\left (960 x^2+124 x^3\right ) \log ^2(2)\right ) \log \left (x^2\right )+\left (-960000 x-252000 x^2-17000 x^3+\left (-384000 x-100800 x^2-6800 x^3\right ) \log (2)+\left (-38400 x-10080 x^2-680 x^3\right ) \log ^2(2)\right ) \log ^2\left (x^2\right )+\left (12800000+5280000 x+780000 x^2+40000 x^3+\left (5120000+2112000 x+312000 x^2+16000 x^3\right ) \log (2)+\left (512000+211200 x+31200 x^2+1600 x^3\right ) \log ^2(2)\right ) \log ^3\left (x^2\right )+\left (-6400000-4800000 x-900000 x^2-50000 x^3+\left (-2560000-1920000 x-360000 x^2-20000 x^3\right ) \log (2)+\left (-256000-192000 x-36000 x^2-2000 x^3\right ) \log ^2(2)\right ) \log ^4\left (x^2\right )+\left (31999975+12000000 x+1500000 x^2+62500 x^3+\left (12800000+4800000 x+600000 x^2+25000 x^3\right ) \log (2)+\left (1280000+480000 x+60000 x^2+2500 x^3\right ) \log ^2(2)\right ) \log ^5\left (x^2\right )}{25 \log ^5\left (x^2\right )} \, dx\\ &=\frac {1}{25} \int \frac {x^3 \left (-200-80 \log (2)-8 \log ^2(2)\right )+\left (24000 x^2+3100 x^3+\left (9600 x^2+1240 x^3\right ) \log (2)+\left (960 x^2+124 x^3\right ) \log ^2(2)\right ) \log \left (x^2\right )+\left (-960000 x-252000 x^2-17000 x^3+\left (-384000 x-100800 x^2-6800 x^3\right ) \log (2)+\left (-38400 x-10080 x^2-680 x^3\right ) \log ^2(2)\right ) \log ^2\left (x^2\right )+\left (12800000+5280000 x+780000 x^2+40000 x^3+\left (5120000+2112000 x+312000 x^2+16000 x^3\right ) \log (2)+\left (512000+211200 x+31200 x^2+1600 x^3\right ) \log ^2(2)\right ) \log ^3\left (x^2\right )+\left (-6400000-4800000 x-900000 x^2-50000 x^3+\left (-2560000-1920000 x-360000 x^2-20000 x^3\right ) \log (2)+\left (-256000-192000 x-36000 x^2-2000 x^3\right ) \log ^2(2)\right ) \log ^4\left (x^2\right )+\left (31999975+12000000 x+1500000 x^2+62500 x^3+\left (12800000+4800000 x+600000 x^2+25000 x^3\right ) \log (2)+\left (1280000+480000 x+60000 x^2+2500 x^3\right ) \log ^2(2)\right ) \log ^5\left (x^2\right )}{\log ^5\left (x^2\right )} \, dx\\ &=\frac {1}{25} \int \left (25 \left (1279999+512000 \log (2)+51200 \log ^2(2)+19200 x (5+\log (2))^2+2400 x^2 (5+\log (2))^2+100 x^3 (5+\log (2))^2\right )-\frac {8 x^3 (5+\log (2))^2}{\log ^5\left (x^2\right )}+\frac {4 x^2 (240+31 x) (5+\log (2))^2}{\log ^4\left (x^2\right )}-\frac {40 x \left (960+252 x+17 x^2\right ) (5+\log (2))^2}{\log ^3\left (x^2\right )}+\frac {800 \left (640+264 x+39 x^2+2 x^3\right ) (5+\log (2))^2}{\log ^2\left (x^2\right )}-\frac {2000 (2+x) (8+x)^2 (5+\log (2))^2}{\log \left (x^2\right )}\right ) \, dx\\ &=\frac {1}{25} \left (4 (5+\log (2))^2\right ) \int \frac {x^2 (240+31 x)}{\log ^4\left (x^2\right )} \, dx-\frac {1}{25} \left (8 (5+\log (2))^2\right ) \int \frac {x^3}{\log ^5\left (x^2\right )} \, dx-\frac {1}{5} \left (8 (5+\log (2))^2\right ) \int \frac {x \left (960+252 x+17 x^2\right )}{\log ^3\left (x^2\right )} \, dx+\left (32 (5+\log (2))^2\right ) \int \frac {640+264 x+39 x^2+2 x^3}{\log ^2\left (x^2\right )} \, dx-\left (80 (5+\log (2))^2\right ) \int \frac {(2+x) (8+x)^2}{\log \left (x^2\right )} \, dx+\int \left (1279999+512000 \log (2)+51200 \log ^2(2)+19200 x (5+\log (2))^2+2400 x^2 (5+\log (2))^2+100 x^3 (5+\log (2))^2\right ) \, dx\\ &=9600 x^2 (5+\log (2))^2+800 x^3 (5+\log (2))^2+25 x^4 (5+\log (2))^2+x \left (1279999+512000 \log (2)+51200 \log ^2(2)\right )+\frac {x^4 (5+\log (2))^2}{25 \log ^4\left (x^2\right )}+\frac {1}{25} \left (4 (5+\log (2))^2\right ) \int \left (\frac {240 x^2}{\log ^4\left (x^2\right )}+\frac {31 x^3}{\log ^4\left (x^2\right )}\right ) \, dx-\frac {1}{25} \left (4 (5+\log (2))^2\right ) \int \frac {x^3}{\log ^4\left (x^2\right )} \, dx-\frac {1}{5} \left (8 (5+\log (2))^2\right ) \int \left (\frac {960 x}{\log ^3\left (x^2\right )}+\frac {252 x^2}{\log ^3\left (x^2\right )}+\frac {17 x^3}{\log ^3\left (x^2\right )}\right ) \, dx+\left (32 (5+\log (2))^2\right ) \int \left (\frac {640}{\log ^2\left (x^2\right )}+\frac {264 x}{\log ^2\left (x^2\right )}+\frac {39 x^2}{\log ^2\left (x^2\right )}+\frac {2 x^3}{\log ^2\left (x^2\right )}\right ) \, dx-\left (80 (5+\log (2))^2\right ) \int \left (\frac {128}{\log \left (x^2\right )}+\frac {96 x}{\log \left (x^2\right )}+\frac {18 x^2}{\log \left (x^2\right )}+\frac {x^3}{\log \left (x^2\right )}\right ) \, dx\\ &=9600 x^2 (5+\log (2))^2+800 x^3 (5+\log (2))^2+25 x^4 (5+\log (2))^2+x \left (1279999+512000 \log (2)+51200 \log ^2(2)\right )+\frac {x^4 (5+\log (2))^2}{25 \log ^4\left (x^2\right )}+\frac {2 x^4 (5+\log (2))^2}{75 \log ^3\left (x^2\right )}-\frac {1}{75} \left (8 (5+\log (2))^2\right ) \int \frac {x^3}{\log ^3\left (x^2\right )} \, dx+\frac {1}{25} \left (124 (5+\log (2))^2\right ) \int \frac {x^3}{\log ^4\left (x^2\right )} \, dx-\frac {1}{5} \left (136 (5+\log (2))^2\right ) \int \frac {x^3}{\log ^3\left (x^2\right )} \, dx+\frac {1}{5} \left (192 (5+\log (2))^2\right ) \int \frac {x^2}{\log ^4\left (x^2\right )} \, dx+\left (64 (5+\log (2))^2\right ) \int \frac {x^3}{\log ^2\left (x^2\right )} \, dx-\left (80 (5+\log (2))^2\right ) \int \frac {x^3}{\log \left (x^2\right )} \, dx-\frac {1}{5} \left (2016 (5+\log (2))^2\right ) \int \frac {x^2}{\log ^3\left (x^2\right )} \, dx+\left (1248 (5+\log (2))^2\right ) \int \frac {x^2}{\log ^2\left (x^2\right )} \, dx-\left (1440 (5+\log (2))^2\right ) \int \frac {x^2}{\log \left (x^2\right )} \, dx-\left (1536 (5+\log (2))^2\right ) \int \frac {x}{\log ^3\left (x^2\right )} \, dx-\left (7680 (5+\log (2))^2\right ) \int \frac {x}{\log \left (x^2\right )} \, dx+\left (8448 (5+\log (2))^2\right ) \int \frac {x}{\log ^2\left (x^2\right )} \, dx-\left (10240 (5+\log (2))^2\right ) \int \frac {1}{\log \left (x^2\right )} \, dx+\left (20480 (5+\log (2))^2\right ) \int \frac {1}{\log ^2\left (x^2\right )} \, dx\\ &=9600 x^2 (5+\log (2))^2+800 x^3 (5+\log (2))^2+25 x^4 (5+\log (2))^2+x \left (1279999+512000 \log (2)+51200 \log ^2(2)\right )+\frac {x^4 (5+\log (2))^2}{25 \log ^4\left (x^2\right )}-\frac {32 x^3 (5+\log (2))^2}{5 \log ^3\left (x^2\right )}-\frac {4 x^4 (5+\log (2))^2}{5 \log ^3\left (x^2\right )}+\frac {384 x^2 (5+\log (2))^2}{\log ^2\left (x^2\right )}+\frac {504 x^3 (5+\log (2))^2}{5 \log ^2\left (x^2\right )}+\frac {512 x^4 (5+\log (2))^2}{75 \log ^2\left (x^2\right )}-\frac {10240 x (5+\log (2))^2}{\log \left (x^2\right )}-\frac {4224 x^2 (5+\log (2))^2}{\log \left (x^2\right )}-\frac {624 x^3 (5+\log (2))^2}{\log \left (x^2\right )}-\frac {32 x^4 (5+\log (2))^2}{\log \left (x^2\right )}-\frac {1}{75} \left (8 (5+\log (2))^2\right ) \int \frac {x^3}{\log ^2\left (x^2\right )} \, dx+\frac {1}{75} \left (248 (5+\log (2))^2\right ) \int \frac {x^3}{\log ^3\left (x^2\right )} \, dx+\frac {1}{5} \left (96 (5+\log (2))^2\right ) \int \frac {x^2}{\log ^3\left (x^2\right )} \, dx-\frac {1}{5} \left (136 (5+\log (2))^2\right ) \int \frac {x^3}{\log ^2\left (x^2\right )} \, dx-\left (40 (5+\log (2))^2\right ) \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log \left (x^2\right )\right )+\left (128 (5+\log (2))^2\right ) \int \frac {x^3}{\log \left (x^2\right )} \, dx-\frac {1}{5} \left (1512 (5+\log (2))^2\right ) \int \frac {x^2}{\log ^2\left (x^2\right )} \, dx-\left (768 (5+\log (2))^2\right ) \int \frac {x}{\log ^2\left (x^2\right )} \, dx+\left (1872 (5+\log (2))^2\right ) \int \frac {x^2}{\log \left (x^2\right )} \, dx-\left (3840 (5+\log (2))^2\right ) \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,x^2\right )+\left (8448 (5+\log (2))^2\right ) \int \frac {x}{\log \left (x^2\right )} \, dx+\left (10240 (5+\log (2))^2\right ) \int \frac {1}{\log \left (x^2\right )} \, dx-\frac {\left (720 x^3 (5+\log (2))^2\right ) \operatorname {Subst}\left (\int \frac {e^{3 x/2}}{x} \, dx,x,\log \left (x^2\right )\right )}{\left (x^2\right )^{3/2}}-\frac {\left (5120 x (5+\log (2))^2\right ) \operatorname {Subst}\left (\int \frac {e^{x/2}}{x} \, dx,x,\log \left (x^2\right )\right )}{\sqrt {x^2}}\\ &=9600 x^2 (5+\log (2))^2+800 x^3 (5+\log (2))^2+25 x^4 (5+\log (2))^2-\frac {5120 x \text {Ei}\left (\frac {\log \left (x^2\right )}{2}\right ) (5+\log (2))^2}{\sqrt {x^2}}-\frac {720 x^3 \text {Ei}\left (\frac {3 \log \left (x^2\right )}{2}\right ) (5+\log (2))^2}{\left (x^2\right )^{3/2}}-40 \text {Ei}\left (2 \log \left (x^2\right )\right ) (5+\log (2))^2+x \left (1279999+512000 \log (2)+51200 \log ^2(2)\right )+\frac {x^4 (5+\log (2))^2}{25 \log ^4\left (x^2\right )}-\frac {32 x^3 (5+\log (2))^2}{5 \log ^3\left (x^2\right )}-\frac {4 x^4 (5+\log (2))^2}{5 \log ^3\left (x^2\right )}+\frac {384 x^2 (5+\log (2))^2}{\log ^2\left (x^2\right )}+\frac {96 x^3 (5+\log (2))^2}{\log ^2\left (x^2\right )}+\frac {6 x^4 (5+\log (2))^2}{\log ^2\left (x^2\right )}-\frac {10240 x (5+\log (2))^2}{\log \left (x^2\right )}-\frac {3840 x^2 (5+\log (2))^2}{\log \left (x^2\right )}-\frac {2364 x^3 (5+\log (2))^2}{5 \log \left (x^2\right )}-\frac {1376 x^4 (5+\log (2))^2}{75 \log \left (x^2\right )}-3840 (5+\log (2))^2 \text {li}\left (x^2\right )-\frac {1}{75} \left (16 (5+\log (2))^2\right ) \int \frac {x^3}{\log \left (x^2\right )} \, dx+\frac {1}{75} \left (248 (5+\log (2))^2\right ) \int \frac {x^3}{\log ^2\left (x^2\right )} \, dx+\frac {1}{5} \left (72 (5+\log (2))^2\right ) \int \frac {x^2}{\log ^2\left (x^2\right )} \, dx-\frac {1}{5} \left (272 (5+\log (2))^2\right ) \int \frac {x^3}{\log \left (x^2\right )} \, dx+\left (64 (5+\log (2))^2\right ) \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log \left (x^2\right )\right )-\frac {1}{5} \left (2268 (5+\log (2))^2\right ) \int \frac {x^2}{\log \left (x^2\right )} \, dx-\left (768 (5+\log (2))^2\right ) \int \frac {x}{\log \left (x^2\right )} \, dx+\left (4224 (5+\log (2))^2\right ) \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,x^2\right )+\frac {\left (936 x^3 (5+\log (2))^2\right ) \operatorname {Subst}\left (\int \frac {e^{3 x/2}}{x} \, dx,x,\log \left (x^2\right )\right )}{\left (x^2\right )^{3/2}}+\frac {\left (5120 x (5+\log (2))^2\right ) \operatorname {Subst}\left (\int \frac {e^{x/2}}{x} \, dx,x,\log \left (x^2\right )\right )}{\sqrt {x^2}}\\ &=9600 x^2 (5+\log (2))^2+800 x^3 (5+\log (2))^2+25 x^4 (5+\log (2))^2+\frac {216 x^3 \text {Ei}\left (\frac {3 \log \left (x^2\right )}{2}\right ) (5+\log (2))^2}{\left (x^2\right )^{3/2}}+24 \text {Ei}\left (2 \log \left (x^2\right )\right ) (5+\log (2))^2+x \left (1279999+512000 \log (2)+51200 \log ^2(2)\right )+\frac {x^4 (5+\log (2))^2}{25 \log ^4\left (x^2\right )}-\frac {32 x^3 (5+\log (2))^2}{5 \log ^3\left (x^2\right )}-\frac {4 x^4 (5+\log (2))^2}{5 \log ^3\left (x^2\right )}+\frac {384 x^2 (5+\log (2))^2}{\log ^2\left (x^2\right )}+\frac {96 x^3 (5+\log (2))^2}{\log ^2\left (x^2\right )}+\frac {6 x^4 (5+\log (2))^2}{\log ^2\left (x^2\right )}-\frac {10240 x (5+\log (2))^2}{\log \left (x^2\right )}-\frac {3840 x^2 (5+\log (2))^2}{\log \left (x^2\right )}-\frac {480 x^3 (5+\log (2))^2}{\log \left (x^2\right )}-\frac {20 x^4 (5+\log (2))^2}{\log \left (x^2\right )}+384 (5+\log (2))^2 \text {li}\left (x^2\right )-\frac {1}{75} \left (8 (5+\log (2))^2\right ) \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log \left (x^2\right )\right )+\frac {1}{75} \left (496 (5+\log (2))^2\right ) \int \frac {x^3}{\log \left (x^2\right )} \, dx+\frac {1}{5} \left (108 (5+\log (2))^2\right ) \int \frac {x^2}{\log \left (x^2\right )} \, dx-\frac {1}{5} \left (136 (5+\log (2))^2\right ) \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log \left (x^2\right )\right )-\left (384 (5+\log (2))^2\right ) \operatorname {Subst}\left (\int \frac {1}{\log (x)} \, dx,x,x^2\right )-\frac {\left (1134 x^3 (5+\log (2))^2\right ) \operatorname {Subst}\left (\int \frac {e^{3 x/2}}{x} \, dx,x,\log \left (x^2\right )\right )}{5 \left (x^2\right )^{3/2}}\\ &=9600 x^2 (5+\log (2))^2+800 x^3 (5+\log (2))^2+25 x^4 (5+\log (2))^2-\frac {54 x^3 \text {Ei}\left (\frac {3 \log \left (x^2\right )}{2}\right ) (5+\log (2))^2}{5 \left (x^2\right )^{3/2}}-\frac {248}{75} \text {Ei}\left (2 \log \left (x^2\right )\right ) (5+\log (2))^2+x \left (1279999+512000 \log (2)+51200 \log ^2(2)\right )+\frac {x^4 (5+\log (2))^2}{25 \log ^4\left (x^2\right )}-\frac {32 x^3 (5+\log (2))^2}{5 \log ^3\left (x^2\right )}-\frac {4 x^4 (5+\log (2))^2}{5 \log ^3\left (x^2\right )}+\frac {384 x^2 (5+\log (2))^2}{\log ^2\left (x^2\right )}+\frac {96 x^3 (5+\log (2))^2}{\log ^2\left (x^2\right )}+\frac {6 x^4 (5+\log (2))^2}{\log ^2\left (x^2\right )}-\frac {10240 x (5+\log (2))^2}{\log \left (x^2\right )}-\frac {3840 x^2 (5+\log (2))^2}{\log \left (x^2\right )}-\frac {480 x^3 (5+\log (2))^2}{\log \left (x^2\right )}-\frac {20 x^4 (5+\log (2))^2}{\log \left (x^2\right )}+\frac {1}{75} \left (248 (5+\log (2))^2\right ) \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log \left (x^2\right )\right )+\frac {\left (54 x^3 (5+\log (2))^2\right ) \operatorname {Subst}\left (\int \frac {e^{3 x/2}}{x} \, dx,x,\log \left (x^2\right )\right )}{5 \left (x^2\right )^{3/2}}\\ &=9600 x^2 (5+\log (2))^2+800 x^3 (5+\log (2))^2+25 x^4 (5+\log (2))^2+x \left (1279999+512000 \log (2)+51200 \log ^2(2)\right )+\frac {x^4 (5+\log (2))^2}{25 \log ^4\left (x^2\right )}-\frac {32 x^3 (5+\log (2))^2}{5 \log ^3\left (x^2\right )}-\frac {4 x^4 (5+\log (2))^2}{5 \log ^3\left (x^2\right )}+\frac {384 x^2 (5+\log (2))^2}{\log ^2\left (x^2\right )}+\frac {96 x^3 (5+\log (2))^2}{\log ^2\left (x^2\right )}+\frac {6 x^4 (5+\log (2))^2}{\log ^2\left (x^2\right )}-\frac {10240 x (5+\log (2))^2}{\log \left (x^2\right )}-\frac {3840 x^2 (5+\log (2))^2}{\log \left (x^2\right )}-\frac {480 x^3 (5+\log (2))^2}{\log \left (x^2\right )}-\frac {20 x^4 (5+\log (2))^2}{\log \left (x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.35, size = 129, normalized size = 4.61 \begin {gather*} x \left (1279999+512000 \log (2)+51200 \log ^2(2)+9600 x (5+\log (2))^2+800 x^2 (5+\log (2))^2+25 x^3 (5+\log (2))^2\right )+\frac {x^4 (5+\log (2))^2}{25 \log ^4\left (x^2\right )}-\frac {4 x^3 (8+x) (5+\log (2))^2}{5 \log ^3\left (x^2\right )}+\frac {6 x^2 (8+x)^2 (5+\log (2))^2}{\log ^2\left (x^2\right )}-\frac {20 x (8+x)^3 (5+\log (2))^2}{\log \left (x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.66, size = 275, normalized size = 9.82 \begin {gather*} \frac {x^{4} \log \relax (2)^{2} + 10 \, x^{4} \log \relax (2) + 25 \, {\left (625 \, x^{4} + 20000 \, x^{3} + 25 \, {\left (x^{4} + 32 \, x^{3} + 384 \, x^{2} + 2048 \, x\right )} \log \relax (2)^{2} + 240000 \, x^{2} + 250 \, {\left (x^{4} + 32 \, x^{3} + 384 \, x^{2} + 2048 \, x\right )} \log \relax (2) + 1279999 \, x\right )} \log \left (x^{2}\right )^{4} + 25 \, x^{4} - 500 \, {\left (25 \, x^{4} + 600 \, x^{3} + {\left (x^{4} + 24 \, x^{3} + 192 \, x^{2} + 512 \, x\right )} \log \relax (2)^{2} + 4800 \, x^{2} + 10 \, {\left (x^{4} + 24 \, x^{3} + 192 \, x^{2} + 512 \, x\right )} \log \relax (2) + 12800 \, x\right )} \log \left (x^{2}\right )^{3} + 150 \, {\left (25 \, x^{4} + 400 \, x^{3} + {\left (x^{4} + 16 \, x^{3} + 64 \, x^{2}\right )} \log \relax (2)^{2} + 1600 \, x^{2} + 10 \, {\left (x^{4} + 16 \, x^{3} + 64 \, x^{2}\right )} \log \relax (2)\right )} \log \left (x^{2}\right )^{2} - 20 \, {\left (25 \, x^{4} + 200 \, x^{3} + {\left (x^{4} + 8 \, x^{3}\right )} \log \relax (2)^{2} + 10 \, {\left (x^{4} + 8 \, x^{3}\right )} \log \relax (2)\right )} \log \left (x^{2}\right )}{25 \, \log \left (x^{2}\right )^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.58, size = 423, normalized size = 15.11 \begin {gather*} 25 \, {\left (\log \relax (2)^{2} + 10 \, \log \relax (2) + 25\right )} x^{4} + 800 \, {\left (\log \relax (2)^{2} + 10 \, \log \relax (2) + 25\right )} x^{3} + 9600 \, {\left (\log \relax (2)^{2} + 10 \, \log \relax (2) + 25\right )} x^{2} + {\left (51200 \, \log \relax (2)^{2} + 512000 \, \log \relax (2) + 1279999\right )} x - \frac {500 \, x^{4} \log \relax (2)^{2} \log \left (x^{2}\right )^{3} - 150 \, x^{4} \log \relax (2)^{2} \log \left (x^{2}\right )^{2} + 5000 \, x^{4} \log \relax (2) \log \left (x^{2}\right )^{3} + 12000 \, x^{3} \log \relax (2)^{2} \log \left (x^{2}\right )^{3} + 20 \, x^{4} \log \relax (2)^{2} \log \left (x^{2}\right ) - 1500 \, x^{4} \log \relax (2) \log \left (x^{2}\right )^{2} - 2400 \, x^{3} \log \relax (2)^{2} \log \left (x^{2}\right )^{2} + 12500 \, x^{4} \log \left (x^{2}\right )^{3} + 120000 \, x^{3} \log \relax (2) \log \left (x^{2}\right )^{3} + 96000 \, x^{2} \log \relax (2)^{2} \log \left (x^{2}\right )^{3} - x^{4} \log \relax (2)^{2} + 200 \, x^{4} \log \relax (2) \log \left (x^{2}\right ) + 160 \, x^{3} \log \relax (2)^{2} \log \left (x^{2}\right ) - 3750 \, x^{4} \log \left (x^{2}\right )^{2} - 24000 \, x^{3} \log \relax (2) \log \left (x^{2}\right )^{2} - 9600 \, x^{2} \log \relax (2)^{2} \log \left (x^{2}\right )^{2} + 300000 \, x^{3} \log \left (x^{2}\right )^{3} + 960000 \, x^{2} \log \relax (2) \log \left (x^{2}\right )^{3} + 256000 \, x \log \relax (2)^{2} \log \left (x^{2}\right )^{3} - 10 \, x^{4} \log \relax (2) + 500 \, x^{4} \log \left (x^{2}\right ) + 1600 \, x^{3} \log \relax (2) \log \left (x^{2}\right ) - 60000 \, x^{3} \log \left (x^{2}\right )^{2} - 96000 \, x^{2} \log \relax (2) \log \left (x^{2}\right )^{2} + 2400000 \, x^{2} \log \left (x^{2}\right )^{3} + 2560000 \, x \log \relax (2) \log \left (x^{2}\right )^{3} - 25 \, x^{4} + 4000 \, x^{3} \log \left (x^{2}\right ) - 240000 \, x^{2} \log \left (x^{2}\right )^{2} + 6400000 \, x \log \left (x^{2}\right )^{3}}{25 \, \log \left (x^{2}\right )^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.16, size = 303, normalized size = 10.82
method | result | size |
norman | \(\frac {\left (\frac {\ln \relax (2)^{2}}{25}+\frac {2 \ln \relax (2)}{5}+1\right ) x^{4}+\left (-10240 \ln \relax (2)^{2}-102400 \ln \relax (2)-256000\right ) x \ln \left (x^{2}\right )^{3}+\left (-3840 \ln \relax (2)^{2}-38400 \ln \relax (2)-96000\right ) x^{2} \ln \left (x^{2}\right )^{3}+\left (-480 \ln \relax (2)^{2}-4800 \ln \relax (2)-12000\right ) x^{3} \ln \left (x^{2}\right )^{3}+\left (-20 \ln \relax (2)^{2}-200 \ln \relax (2)-500\right ) x^{4} \ln \left (x^{2}\right )^{3}+\left (6 \ln \relax (2)^{2}+60 \ln \relax (2)+150\right ) x^{4} \ln \left (x^{2}\right )^{2}+\left (25 \ln \relax (2)^{2}+250 \ln \relax (2)+625\right ) x^{4} \ln \left (x^{2}\right )^{4}+\left (96 \ln \relax (2)^{2}+960 \ln \relax (2)+2400\right ) x^{3} \ln \left (x^{2}\right )^{2}+\left (384 \ln \relax (2)^{2}+3840 \ln \relax (2)+9600\right ) x^{2} \ln \left (x^{2}\right )^{2}+\left (800 \ln \relax (2)^{2}+8000 \ln \relax (2)+20000\right ) x^{3} \ln \left (x^{2}\right )^{4}+\left (9600 \ln \relax (2)^{2}+96000 \ln \relax (2)+240000\right ) x^{2} \ln \left (x^{2}\right )^{4}+\left (51200 \ln \relax (2)^{2}+512000 \ln \relax (2)+1279999\right ) x \ln \left (x^{2}\right )^{4}+\left (-\frac {32 \ln \relax (2)^{2}}{5}-64 \ln \relax (2)-160\right ) x^{3} \ln \left (x^{2}\right )+\left (-\frac {4 \ln \relax (2)^{2}}{5}-8 \ln \relax (2)-20\right ) x^{4} \ln \left (x^{2}\right )}{\ln \left (x^{2}\right )^{4}}\) | \(303\) |
risch | \(25 x^{4} \ln \relax (2)^{2}+800 x^{3} \ln \relax (2)^{2}+250 x^{4} \ln \relax (2)+9600 x^{2} \ln \relax (2)^{2}+8000 x^{3} \ln \relax (2)+625 x^{4}+51200 x \ln \relax (2)^{2}+96000 x^{2} \ln \relax (2)+20000 x^{3}+512000 x \ln \relax (2)+240000 x^{2}+1279999 x -\frac {x \left (-150 x^{3} \ln \relax (2)^{2} \ln \left (x^{2}\right )^{2}-2400 x^{2} \ln \relax (2)^{2} \ln \left (x^{2}\right )^{2}+6400000 \ln \left (x^{2}\right )^{3}-25 x^{3}+300000 x^{2} \ln \left (x^{2}\right )^{3}-3750 x^{3} \ln \left (x^{2}\right )^{2}+500 x^{3} \ln \left (x^{2}\right )-x^{3} \ln \relax (2)^{2}-10 x^{3} \ln \relax (2)+2400000 x \ln \left (x^{2}\right )^{3}+2560000 \ln \relax (2) \ln \left (x^{2}\right )^{3}+12500 \ln \left (x^{2}\right )^{3} x^{3}+256000 \ln \relax (2)^{2} \ln \left (x^{2}\right )^{3}-60000 x^{2} \ln \left (x^{2}\right )^{2}-240000 x \ln \left (x^{2}\right )^{2}+4000 x^{2} \ln \left (x^{2}\right )+500 \ln \relax (2)^{2} \ln \left (x^{2}\right )^{3} x^{3}+12000 \ln \relax (2)^{2} \ln \left (x^{2}\right )^{3} x^{2}+5000 \ln \relax (2) \ln \left (x^{2}\right )^{3} x^{3}+96000 \ln \relax (2)^{2} \ln \left (x^{2}\right )^{3} x +20 \ln \relax (2)^{2} \ln \left (x^{2}\right ) x^{3}+120000 \ln \relax (2) \ln \left (x^{2}\right )^{3} x^{2}-1500 \ln \relax (2) \ln \left (x^{2}\right )^{2} x^{3}-9600 \ln \relax (2)^{2} \ln \left (x^{2}\right )^{2} x +160 \ln \relax (2)^{2} \ln \left (x^{2}\right ) x^{2}+960000 \ln \relax (2) \ln \left (x^{2}\right )^{3} x -24000 \ln \relax (2) \ln \left (x^{2}\right )^{2} x^{2}+200 \ln \relax (2) \ln \left (x^{2}\right ) x^{3}-96000 \ln \relax (2) \ln \left (x^{2}\right )^{2} x +1600 \ln \relax (2) \ln \left (x^{2}\right ) x^{2}\right )}{25 \ln \left (x^{2}\right )^{4}}\) | \(429\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.71, size = 249, normalized size = 8.89 \begin {gather*} 25 \, x^{4} \log \relax (2)^{2} + 250 \, x^{4} \log \relax (2) + 800 \, x^{3} \log \relax (2)^{2} + 625 \, x^{4} + 8000 \, x^{3} \log \relax (2) + 9600 \, x^{2} \log \relax (2)^{2} + 20000 \, x^{3} + 96000 \, x^{2} \log \relax (2) + 51200 \, x \log \relax (2)^{2} + 240000 \, x^{2} + 512000 \, x \log \relax (2) + 1279999 \, x + \frac {{\left (\log \relax (2)^{2} + 10 \, \log \relax (2) + 25\right )} x^{4} - 4000 \, {\left ({\left (\log \relax (2)^{2} + 10 \, \log \relax (2) + 25\right )} x^{4} + 24 \, {\left (\log \relax (2)^{2} + 10 \, \log \relax (2) + 25\right )} x^{3} + 192 \, {\left (\log \relax (2)^{2} + 10 \, \log \relax (2) + 25\right )} x^{2} + 512 \, {\left (\log \relax (2)^{2} + 10 \, \log \relax (2) + 25\right )} x\right )} \log \relax (x)^{3} + 600 \, {\left ({\left (\log \relax (2)^{2} + 10 \, \log \relax (2) + 25\right )} x^{4} + 16 \, {\left (\log \relax (2)^{2} + 10 \, \log \relax (2) + 25\right )} x^{3} + 64 \, {\left (\log \relax (2)^{2} + 10 \, \log \relax (2) + 25\right )} x^{2}\right )} \log \relax (x)^{2} - 40 \, {\left ({\left (\log \relax (2)^{2} + 10 \, \log \relax (2) + 25\right )} x^{4} + 8 \, {\left (\log \relax (2)^{2} + 10 \, \log \relax (2) + 25\right )} x^{3}\right )} \log \relax (x)}{400 \, \log \relax (x)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.36, size = 205, normalized size = 7.32 \begin {gather*} \frac {9600\,x^3\,{\left (\ln \relax (2)+5\right )}^2+800\,x^4\,{\left (\ln \relax (2)+5\right )}^2+25\,x^5\,{\left (\ln \relax (2)+5\right )}^2+\frac {x^2\,\left (12800000\,\ln \relax (2)+1280000\,{\ln \relax (2)}^2+31999975\right )}{25}}{x}+\frac {\frac {x^5\,\left (10\,\ln \relax (2)+{\ln \relax (2)}^2+25\right )}{25}+{\ln \left (x^2\right )}^2\,\left (6\,{\left (\ln \relax (2)+5\right )}^2\,x^5+96\,{\left (\ln \relax (2)+5\right )}^2\,x^4+384\,{\left (\ln \relax (2)+5\right )}^2\,x^3\right )-\ln \left (x^2\right )\,\left (\frac {4\,{\left (\ln \relax (2)+5\right )}^2\,x^5}{5}+\frac {32\,{\left (\ln \relax (2)+5\right )}^2\,x^4}{5}\right )-{\ln \left (x^2\right )}^3\,\left (20\,{\left (\ln \relax (2)+5\right )}^2\,x^5+480\,{\left (\ln \relax (2)+5\right )}^2\,x^4+3840\,{\left (\ln \relax (2)+5\right )}^2\,x^3+10240\,{\left (\ln \relax (2)+5\right )}^2\,x^2\right )}{x\,{\ln \left (x^2\right )}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.45, size = 326, normalized size = 11.64 \begin {gather*} x^{4} \left (25 \log {\relax (2 )}^{2} + 250 \log {\relax (2 )} + 625\right ) + x^{3} \left (800 \log {\relax (2 )}^{2} + 8000 \log {\relax (2 )} + 20000\right ) + x^{2} \left (9600 \log {\relax (2 )}^{2} + 96000 \log {\relax (2 )} + 240000\right ) + x \left (51200 \log {\relax (2 )}^{2} + 512000 \log {\relax (2 )} + 1279999\right ) + \frac {x^{4} \log {\relax (2 )}^{2} + 10 x^{4} \log {\relax (2 )} + 25 x^{4} + \left (- 500 x^{4} - 200 x^{4} \log {\relax (2 )} - 20 x^{4} \log {\relax (2 )}^{2} - 4000 x^{3} - 1600 x^{3} \log {\relax (2 )} - 160 x^{3} \log {\relax (2 )}^{2}\right ) \log {\left (x^{2} \right )} + \left (150 x^{4} \log {\relax (2 )}^{2} + 1500 x^{4} \log {\relax (2 )} + 3750 x^{4} + 2400 x^{3} \log {\relax (2 )}^{2} + 24000 x^{3} \log {\relax (2 )} + 60000 x^{3} + 9600 x^{2} \log {\relax (2 )}^{2} + 96000 x^{2} \log {\relax (2 )} + 240000 x^{2}\right ) \log {\left (x^{2} \right )}^{2} + \left (- 12500 x^{4} - 5000 x^{4} \log {\relax (2 )} - 500 x^{4} \log {\relax (2 )}^{2} - 300000 x^{3} - 120000 x^{3} \log {\relax (2 )} - 12000 x^{3} \log {\relax (2 )}^{2} - 2400000 x^{2} - 960000 x^{2} \log {\relax (2 )} - 96000 x^{2} \log {\relax (2 )}^{2} - 6400000 x - 2560000 x \log {\relax (2 )} - 256000 x \log {\relax (2 )}^{2}\right ) \log {\left (x^{2} \right )}^{3}}{25 \log {\left (x^{2} \right )}^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________