Optimal. Leaf size=22 \[ \frac {e^{18+e^4-3 x-x \log (x)}}{2+\log (2)} \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {12, 6706} \begin {gather*} \frac {e^{-3 x+e^4+18} x^{-x}}{2+\log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int e^{18+e^4-3 x-x \log (x)} (-4-\log (x)) \, dx}{2+\log (2)}\\ &=\frac {e^{18+e^4-3 x} x^{-x}}{2+\log (2)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 22, normalized size = 1.00 \begin {gather*} \frac {e^{18+e^4-3 x} x^{-x}}{2+\log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 20, normalized size = 0.91 \begin {gather*} e^{\left (-x \log \relax (x) - 3 \, x + e^{4} - \log \left (\log \relax (2) + 2\right ) + 18\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 20, normalized size = 0.91 \begin {gather*} e^{\left (-x \log \relax (x) - 3 \, x + e^{4} - \log \left (\log \relax (2) + 2\right ) + 18\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 21, normalized size = 0.95
method | result | size |
derivativedivides | \({\mathrm e}^{-\ln \left (\ln \relax (2)+2\right )-x \ln \relax (x )+{\mathrm e}^{4}-3 x +18}\) | \(21\) |
default | \({\mathrm e}^{-\ln \left (\ln \relax (2)+2\right )-x \ln \relax (x )+{\mathrm e}^{4}-3 x +18}\) | \(21\) |
norman | \({\mathrm e}^{-\ln \left (\ln \relax (2)+2\right )-x \ln \relax (x )+{\mathrm e}^{4}-3 x +18}\) | \(21\) |
risch | \(\frac {x^{-x} {\mathrm e}^{18+{\mathrm e}^{4}-3 x}}{\ln \relax (2)+2}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.56, size = 20, normalized size = 0.91 \begin {gather*} \frac {e^{\left (-x \log \relax (x) - 3 \, x + e^{4} + 18\right )}}{\log \relax (2) + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.02, size = 21, normalized size = 0.95 \begin {gather*} \frac {{\mathrm {e}}^{-3\,x}\,{\mathrm {e}}^{18}\,{\mathrm {e}}^{{\mathrm {e}}^4}}{x^x\,\left (\ln \relax (2)+2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 19, normalized size = 0.86 \begin {gather*} \frac {e^{- x \log {\relax (x )} - 3 x + 18 + e^{4}}}{\log {\relax (2 )} + 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________