Optimal. Leaf size=14 \[ e^{\frac {5}{x^2 (-4+\log (\log (x)))}} \]
________________________________________________________________________________________
Rubi [A] time = 1.13, antiderivative size = 16, normalized size of antiderivative = 1.14, number of steps used = 3, number of rules used = 3, integrand size = 64, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.047, Rules used = {6688, 12, 6706} \begin {gather*} e^{-\frac {5}{x^2 (4-\log (\log (x)))}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6688
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 e^{\frac {5}{x^2 (-4+\log (\log (x)))}} (-1-2 \log (x) (-4+\log (\log (x))))}{x^3 \log (x) (4-\log (\log (x)))^2} \, dx\\ &=5 \int \frac {e^{\frac {5}{x^2 (-4+\log (\log (x)))}} (-1-2 \log (x) (-4+\log (\log (x))))}{x^3 \log (x) (4-\log (\log (x)))^2} \, dx\\ &=e^{-\frac {5}{x^2 (4-\log (\log (x)))}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 14, normalized size = 1.00 \begin {gather*} e^{\frac {5}{x^2 (-4+\log (\log (x)))}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 18, normalized size = 1.29 \begin {gather*} e^{\left (\frac {5}{x^{2} \log \left (\log \relax (x)\right ) - 4 \, x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.63, size = 18, normalized size = 1.29 \begin {gather*} e^{\left (\frac {5}{x^{2} \log \left (\log \relax (x)\right ) - 4 \, x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 14, normalized size = 1.00
method | result | size |
risch | \({\mathrm e}^{\frac {5}{x^{2} \left (\ln \left (\ln \relax (x )\right )-4\right )}}\) | \(14\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.52, size = 13, normalized size = 0.93 \begin {gather*} {\mathrm {e}}^{\frac {5}{x^2\,\left (\ln \left (\ln \relax (x)\right )-4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.82, size = 15, normalized size = 1.07 \begin {gather*} e^{\frac {5}{x^{2} \log {\left (\log {\relax (x )} \right )} - 4 x^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________