Optimal. Leaf size=31 \[ \left (-\frac {4 x}{5}+\frac {1}{5 (1+x)}+e^{-x} \log (x)\right ) (4-\log (\log (2))) \]
________________________________________________________________________________________
Rubi [A] time = 2.50, antiderivative size = 44, normalized size of antiderivative = 1.42, number of steps used = 10, number of rules used = 7, integrand size = 116, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.060, Rules used = {1594, 27, 12, 6688, 6742, 683, 2288} \begin {gather*} -\frac {4}{5} x (4-\log (\log (2)))+e^{-x} (4-\log (\log (2))) \log (x)+\frac {4-\log (\log (2))}{5 (x+1)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 683
Rule 1594
Rule 2288
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-x} \left (20+40 x+20 x^2+e^x \left (-20 x-32 x^2-16 x^3\right )+\left (-20 x-40 x^2-20 x^3\right ) \log (x)+\left (-5-10 x-5 x^2+e^x \left (5 x+8 x^2+4 x^3\right )+\left (5 x+10 x^2+5 x^3\right ) \log (x)\right ) \log (\log (2))\right )}{x \left (5+10 x+5 x^2\right )} \, dx\\ &=\int \frac {e^{-x} \left (20+40 x+20 x^2+e^x \left (-20 x-32 x^2-16 x^3\right )+\left (-20 x-40 x^2-20 x^3\right ) \log (x)+\left (-5-10 x-5 x^2+e^x \left (5 x+8 x^2+4 x^3\right )+\left (5 x+10 x^2+5 x^3\right ) \log (x)\right ) \log (\log (2))\right )}{5 x (1+x)^2} \, dx\\ &=\frac {1}{5} \int \frac {e^{-x} \left (20+40 x+20 x^2+e^x \left (-20 x-32 x^2-16 x^3\right )+\left (-20 x-40 x^2-20 x^3\right ) \log (x)+\left (-5-10 x-5 x^2+e^x \left (5 x+8 x^2+4 x^3\right )+\left (5 x+10 x^2+5 x^3\right ) \log (x)\right ) \log (\log (2))\right )}{x (1+x)^2} \, dx\\ &=\frac {1}{5} \int \frac {e^{-x} \left (5-5 \left (-2+e^x\right ) x-\left (-5+8 e^x\right ) x^2-4 e^x x^3-5 x (1+x)^2 \log (x)\right ) (4-\log (\log (2)))}{x (1+x)^2} \, dx\\ &=\frac {1}{5} (4-\log (\log (2))) \int \frac {e^{-x} \left (5-5 \left (-2+e^x\right ) x-\left (-5+8 e^x\right ) x^2-4 e^x x^3-5 x (1+x)^2 \log (x)\right )}{x (1+x)^2} \, dx\\ &=\frac {1}{5} (4-\log (\log (2))) \int \left (-\frac {5+8 x+4 x^2}{(1+x)^2}-\frac {5 e^{-x} (-1+x \log (x))}{x}\right ) \, dx\\ &=\frac {1}{5} (-4+\log (\log (2))) \int \frac {5+8 x+4 x^2}{(1+x)^2} \, dx+(-4+\log (\log (2))) \int \frac {e^{-x} (-1+x \log (x))}{x} \, dx\\ &=e^{-x} \log (x) (4-\log (\log (2)))+\frac {1}{5} (-4+\log (\log (2))) \int \left (4+\frac {1}{(1+x)^2}\right ) \, dx\\ &=-\frac {4}{5} x (4-\log (\log (2)))+\frac {4-\log (\log (2))}{5 (1+x)}+e^{-x} \log (x) (4-\log (\log (2)))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.40, size = 29, normalized size = 0.94 \begin {gather*} \frac {1}{5} \left (4 x-\frac {1}{1+x}-5 e^{-x} \log (x)\right ) (-4+\log (\log (2))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.51, size = 59, normalized size = 1.90 \begin {gather*} -\frac {{\left (4 \, {\left (4 \, x^{2} + 4 \, x - 1\right )} e^{x} - 20 \, {\left (x + 1\right )} \log \relax (x) - {\left ({\left (4 \, x^{2} + 4 \, x - 1\right )} e^{x} - 5 \, {\left (x + 1\right )} \log \relax (x)\right )} \log \left (\log \relax (2)\right )\right )} e^{\left (-x\right )}}{5 \, {\left (x + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.16, size = 74, normalized size = 2.39 \begin {gather*} -\frac {5 \, x e^{\left (-x\right )} \log \relax (x) \log \left (\log \relax (2)\right ) - 20 \, x e^{\left (-x\right )} \log \relax (x) - 4 \, x^{2} \log \left (\log \relax (2)\right ) + 5 \, e^{\left (-x\right )} \log \relax (x) \log \left (\log \relax (2)\right ) + 16 \, x^{2} - 20 \, e^{\left (-x\right )} \log \relax (x) - 4 \, x \log \left (\log \relax (2)\right ) + 16 \, x + \log \left (\log \relax (2)\right ) - 4}{5 \, {\left (x + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 43, normalized size = 1.39
method | result | size |
default | \(\frac {\left (-5 \ln \left (\ln \relax (2)\right )+20\right ) \ln \relax (x ) {\mathrm e}^{-x}}{5}+\frac {4 x \ln \left (\ln \relax (2)\right )}{5}-\frac {\ln \left (\ln \relax (2)\right )}{5 \left (x +1\right )}-\frac {16 x}{5}+\frac {4}{5 \left (x +1\right )}\) | \(43\) |
risch | \(-\left (\ln \left (\ln \relax (2)\right )-4\right ) {\mathrm e}^{-x} \ln \relax (x )+\frac {4 x^{2} \ln \left (\ln \relax (2)\right )+4 x \ln \left (\ln \relax (2)\right )-16 x^{2}-\ln \left (\ln \relax (2)\right )-16 x +4}{5 x +5}\) | \(51\) |
norman | \(\frac {\left (\left (4-\ln \left (\ln \relax (2)\right )\right ) \ln \relax (x )+\left (4-\ln \left (\ln \relax (2)\right )\right ) {\mathrm e}^{x}+\left (4-\ln \left (\ln \relax (2)\right )\right ) x \ln \relax (x )+\left (-\frac {16}{5}+\frac {4 \ln \left (\ln \relax (2)\right )}{5}\right ) x^{2} {\mathrm e}^{x}\right ) {\mathrm e}^{-x}}{x +1}\) | \(56\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.65, size = 52, normalized size = 1.68 \begin {gather*} \frac {4 \, x^{2} {\left (\log \left (\log \relax (2)\right ) - 4\right )} - 5 \, {\left (x {\left (\log \left (\log \relax (2)\right ) - 4\right )} + \log \left (\log \relax (2)\right ) - 4\right )} e^{\left (-x\right )} \log \relax (x) + 4 \, x {\left (\log \left (\log \relax (2)\right ) - 4\right )} - \log \left (\log \relax (2)\right ) + 4}{5 \, {\left (x + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.23, size = 38, normalized size = 1.23 \begin {gather*} \frac {{\mathrm {e}}^{-x}\,\left (\ln \left (\ln \relax (2)\right )-4\right )\,\left ({\mathrm {e}}^x-5\,\ln \relax (x)+4\,x\,{\mathrm {e}}^x\right )}{5}-\frac {\frac {\ln \left (\ln \relax (2)\right )}{5}-\frac {4}{5}}{x+1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.61, size = 41, normalized size = 1.32 \begin {gather*} - x \left (\frac {16}{5} - \frac {4 \log {\left (\log {\relax (2 )} \right )}}{5}\right ) + \left (- \log {\relax (x )} \log {\left (\log {\relax (2 )} \right )} + 4 \log {\relax (x )}\right ) e^{- x} - \frac {-4 + \log {\left (\log {\relax (2 )} \right )}}{5 x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________