Optimal. Leaf size=28 \[ \frac {1}{4}+\frac {1}{3} \left (x+\log (x) \left (-x+\log \left (-\frac {24}{5}-e^{16}+x\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.27, antiderivative size = 67, normalized size of antiderivative = 2.39, number of steps used = 12, number of rules used = 9, integrand size = 63, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {6, 1593, 6688, 12, 2357, 2295, 2316, 2315, 2394} \begin {gather*} \frac {x}{3}-\frac {1}{3} x \log (x)+\frac {1}{3} \log \left (\frac {24}{5}+e^{16}\right ) \log \left (-5 x+5 e^{16}+24\right )+\frac {1}{3} \log \left (\frac {5 x}{24+5 e^{16}}\right ) \log \left (x+\frac {1}{5} \left (-24-5 e^{16}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 1593
Rule 2295
Rule 2315
Rule 2316
Rule 2357
Rule 2394
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-29 x-5 e^{16} x+5 x^2\right ) \log (x)+\left (24+5 e^{16}-5 x\right ) \log \left (\frac {1}{5} \left (-24-5 e^{16}+5 x\right )\right )}{\left (72+15 e^{16}\right ) x-15 x^2} \, dx\\ &=\int \frac {\left (-29 x-5 e^{16} x+5 x^2\right ) \log (x)+\left (24+5 e^{16}-5 x\right ) \log \left (\frac {1}{5} \left (-24-5 e^{16}+5 x\right )\right )}{\left (72+15 e^{16}-15 x\right ) x} \, dx\\ &=\int \frac {1}{3} \left (\frac {\left (-29-5 e^{16}+5 x\right ) \log (x)}{24+5 e^{16}-5 x}+\frac {\log \left (-\frac {24}{5}-e^{16}+x\right )}{x}\right ) \, dx\\ &=\frac {1}{3} \int \left (\frac {\left (-29-5 e^{16}+5 x\right ) \log (x)}{24+5 e^{16}-5 x}+\frac {\log \left (-\frac {24}{5}-e^{16}+x\right )}{x}\right ) \, dx\\ &=\frac {1}{3} \int \frac {\left (-29-5 e^{16}+5 x\right ) \log (x)}{24+5 e^{16}-5 x} \, dx+\frac {1}{3} \int \frac {\log \left (-\frac {24}{5}-e^{16}+x\right )}{x} \, dx\\ &=\frac {1}{3} \log \left (\frac {5 x}{24+5 e^{16}}\right ) \log \left (\frac {1}{5} \left (-24-5 e^{16}\right )+x\right )+\frac {1}{3} \int \left (-\log (x)-\frac {5 \log (x)}{24+5 e^{16}-5 x}\right ) \, dx-\frac {1}{3} \int \frac {\log \left (\frac {x}{\frac {24}{5}+e^{16}}\right )}{-\frac {24}{5}-e^{16}+x} \, dx\\ &=\frac {1}{3} \log \left (\frac {5 x}{24+5 e^{16}}\right ) \log \left (\frac {1}{5} \left (-24-5 e^{16}\right )+x\right )+\frac {1}{3} \text {Li}_2\left (1-\frac {5 x}{24+5 e^{16}}\right )-\frac {1}{3} \int \log (x) \, dx-\frac {5}{3} \int \frac {\log (x)}{24+5 e^{16}-5 x} \, dx\\ &=\frac {x}{3}+\frac {1}{3} \log \left (\frac {24}{5}+e^{16}\right ) \log \left (24+5 e^{16}-5 x\right )-\frac {1}{3} x \log (x)+\frac {1}{3} \log \left (\frac {5 x}{24+5 e^{16}}\right ) \log \left (\frac {1}{5} \left (-24-5 e^{16}\right )+x\right )+\frac {1}{3} \text {Li}_2\left (1-\frac {5 x}{24+5 e^{16}}\right )-\frac {5}{3} \int \frac {\log \left (\frac {5 x}{24+5 e^{16}}\right )}{24+5 e^{16}-5 x} \, dx\\ &=\frac {x}{3}+\frac {1}{3} \log \left (\frac {24}{5}+e^{16}\right ) \log \left (24+5 e^{16}-5 x\right )-\frac {1}{3} x \log (x)+\frac {1}{3} \log \left (\frac {5 x}{24+5 e^{16}}\right ) \log \left (\frac {1}{5} \left (-24-5 e^{16}\right )+x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.04, size = 102, normalized size = 3.64 \begin {gather*} \frac {1}{3} \left (x+\log \left (\frac {24}{5}+e^{16}\right ) \log \left (24+5 e^{16}-5 x\right )-x \log (x)+\log \left (\frac {x}{\frac {24}{5}+e^{16}}\right ) \log \left (-\frac {24}{5}-e^{16}+x\right )-\text {Li}_2\left (\frac {24+5 e^{16}-5 x}{24+5 e^{16}}\right )+\text {Li}_2\left (-\frac {5 \left (-\frac {24}{5}-e^{16}+x\right )}{24+5 e^{16}}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 20, normalized size = 0.71 \begin {gather*} -\frac {1}{3} \, {\left (x - \log \left (x - e^{16} - \frac {24}{5}\right )\right )} \log \relax (x) + \frac {1}{3} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 29, normalized size = 1.04 \begin {gather*} -\frac {1}{3} \, x \log \relax (x) - \frac {1}{3} \, \log \relax (5) \log \relax (x) + \frac {1}{3} \, \log \left (5 \, x - 5 \, e^{16} - 24\right ) \log \relax (x) + \frac {1}{3} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.30, size = 22, normalized size = 0.79
method | result | size |
norman | \(\frac {x}{3}-\frac {x \ln \relax (x )}{3}+\frac {\ln \relax (x ) \ln \left (-{\mathrm e}^{16}+x -\frac {24}{5}\right )}{3}\) | \(22\) |
risch | \(\frac {x}{3}-\frac {x \ln \relax (x )}{3}+\frac {\ln \relax (x ) \ln \left (-{\mathrm e}^{16}+x -\frac {24}{5}\right )}{3}\) | \(22\) |
default | \(\frac {\ln \left (-5 \,{\mathrm e}^{16}+5 x -24\right ) \ln \left (\frac {5 x}{5 \,{\mathrm e}^{16}+24}\right )}{3}-\frac {\ln \relax (5) \ln \relax (x )}{3}-\frac {x \ln \relax (x )}{3}+\frac {x}{3}+\frac {\left (\ln \relax (x )-\ln \left (\frac {5 x}{5 \,{\mathrm e}^{16}+24}\right )\right ) \ln \left (\frac {5 \,{\mathrm e}^{16}-5 x +24}{5 \,{\mathrm e}^{16}+24}\right )}{3}\) | \(78\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.68, size = 26, normalized size = 0.93 \begin {gather*} -\frac {1}{3} \, {\left (x + \log \relax (5)\right )} \log \relax (x) + \frac {1}{3} \, \log \left (5 \, x - 5 \, e^{16} - 24\right ) \log \relax (x) + \frac {1}{3} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.38, size = 21, normalized size = 0.75 \begin {gather*} \frac {x}{3}+\frac {\ln \left (x-{\mathrm {e}}^{16}-\frac {24}{5}\right )\,\ln \relax (x)}{3}-\frac {x\,\ln \relax (x)}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 24, normalized size = 0.86 \begin {gather*} - \frac {x \log {\relax (x )}}{3} + \frac {x}{3} + \frac {\log {\relax (x )} \log {\left (x - e^{16} - \frac {24}{5} \right )}}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________