Optimal. Leaf size=28 \[ \log \left (\frac {e^x \log (x)}{x+x^2+\frac {1}{4} x \left (3-e^x+\log (4)\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.09, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-7+e^x-4 x-\log (4)+\left (7-e^x+x-4 x^2+(1-x) \log (4)\right ) \log (x)}{\left (-7 x+e^x x-4 x^2-x \log (4)\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-7+e^x-4 x-\log (4)+\left (7-e^x+x-4 x^2+(1-x) \log (4)\right ) \log (x)}{\left (e^x x-4 x^2+x (-7-\log (4))\right ) \log (x)} \, dx\\ &=\int \frac {e^x-4 x-7 \left (1+\frac {2 \log (2)}{7}\right )+\left (7-e^x+x-4 x^2+(1-x) \log (4)\right ) \log (x)}{\left (e^x x-4 x^2+x (-7-\log (4))\right ) \log (x)} \, dx\\ &=\int \left (\frac {-3-4 x-\log (4)}{e^x-4 x-7 \left (1+\frac {2 \log (2)}{7}\right )}+\frac {1-\log (x)}{x \log (x)}\right ) \, dx\\ &=\int \frac {-3-4 x-\log (4)}{e^x-4 x-7 \left (1+\frac {2 \log (2)}{7}\right )} \, dx+\int \frac {1-\log (x)}{x \log (x)} \, dx\\ &=\int \left (\frac {4 x}{-e^x+4 x+7 \left (1+\frac {2 \log (2)}{7}\right )}+\frac {3 \left (1+\frac {2 \log (2)}{3}\right )}{-e^x+4 x+7 \left (1+\frac {2 \log (2)}{7}\right )}\right ) \, dx+\operatorname {Subst}\left (\int \frac {1-x}{x} \, dx,x,\log (x)\right )\\ &=4 \int \frac {x}{-e^x+4 x+7 \left (1+\frac {2 \log (2)}{7}\right )} \, dx+(3+\log (4)) \int \frac {1}{-e^x+4 x+7 \left (1+\frac {2 \log (2)}{7}\right )} \, dx+\operatorname {Subst}\left (\int \left (-1+\frac {1}{x}\right ) \, dx,x,\log (x)\right )\\ &=-\log (x)+\log (\log (x))+4 \int \frac {x}{-e^x+4 x+7 \left (1+\frac {2 \log (2)}{7}\right )} \, dx+(3+\log (4)) \int \frac {1}{-e^x+4 x+7 \left (1+\frac {2 \log (2)}{7}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.45, size = 24, normalized size = 0.86 \begin {gather*} x-\log (x)-\log \left (7-e^x+4 x+\log (4)\right )+\log (\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 23, normalized size = 0.82 \begin {gather*} x - \log \relax (x) - \log \left (-4 \, x + e^{x} - 2 \, \log \relax (2) - 7\right ) + \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 25, normalized size = 0.89 \begin {gather*} x - \log \left (4 \, x - e^{x} + 2 \, \log \relax (2) + 7\right ) - \log \relax (x) + \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 24, normalized size = 0.86
method | result | size |
risch | \(-\ln \relax (x )+x -\ln \left ({\mathrm e}^{x}-2 \ln \relax (2)-4 x -7\right )+\ln \left (\ln \relax (x )\right )\) | \(24\) |
norman | \(x -\ln \relax (x )-\ln \left (2 \ln \relax (2)+4 x -{\mathrm e}^{x}+7\right )+\ln \left (\ln \relax (x )\right )\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.57, size = 23, normalized size = 0.82 \begin {gather*} x - \log \relax (x) - \log \left (-4 \, x + e^{x} - 2 \, \log \relax (2) - 7\right ) + \log \left (\log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.35, size = 23, normalized size = 0.82 \begin {gather*} x-\ln \left ({\mathrm {e}}^x-\ln \relax (4)-4\,x-7\right )+\ln \left (\ln \relax (x)\right )-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.33, size = 24, normalized size = 0.86 \begin {gather*} x - \log {\relax (x )} - \log {\left (- 4 x + e^{x} - 7 - 2 \log {\relax (2 )} \right )} + \log {\left (\log {\relax (x )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________