Optimal. Leaf size=27 \[ \frac {24 e^{-x-e^2 x}}{\left (5+e^{e^{3 x^2}}\right )^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.48, antiderivative size = 25, normalized size of antiderivative = 0.93, number of steps used = 3, number of rules used = 3, integrand size = 105, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {6688, 12, 2288} \begin {gather*} \frac {24 e^{-\left (\left (1+e^2\right ) x\right )}}{\left (e^{e^{3 x^2}}+5\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {24 e^{-\left (\left (1+e^2\right ) x\right )} \left (-5 \left (1+e^2\right )-e^{e^{3 x^2}} \left (1+e^2\right )-12 e^{e^{3 x^2}+3 x^2} x\right )}{\left (5+e^{e^{3 x^2}}\right )^3} \, dx\\ &=24 \int \frac {e^{-\left (\left (1+e^2\right ) x\right )} \left (-5 \left (1+e^2\right )-e^{e^{3 x^2}} \left (1+e^2\right )-12 e^{e^{3 x^2}+3 x^2} x\right )}{\left (5+e^{e^{3 x^2}}\right )^3} \, dx\\ &=\frac {24 e^{-\left (\left (1+e^2\right ) x\right )}}{\left (5+e^{e^{3 x^2}}\right )^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.53, size = 25, normalized size = 0.93 \begin {gather*} \frac {24 e^{-\left (\left (1+e^2\right ) x\right )}}{\left (5+e^{e^{3 x^2}}\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.59, size = 60, normalized size = 2.22 \begin {gather*} \frac {24 \, e^{\left (x e^{2} + x\right )}}{e^{\left (2 \, x e^{2} + 2 \, x + 2 \, e^{\left (3 \, x^{2}\right )}\right )} + 10 \, e^{\left (2 \, x e^{2} + 2 \, x + e^{\left (3 \, x^{2}\right )}\right )} + 25 \, e^{\left (2 \, x e^{2} + 2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.24, size = 134, normalized size = 4.96 \begin {gather*} \frac {24 \, {\left (x e^{\left (9 \, x^{2} + x e^{2} + x + e^{\left (3 \, x^{2}\right )}\right )} + 5 \, x e^{\left (9 \, x^{2} + x e^{2} + x\right )}\right )}}{x e^{\left (9 \, x^{2} + 2 \, x e^{2} + 2 \, x + 3 \, e^{\left (3 \, x^{2}\right )}\right )} + 15 \, x e^{\left (9 \, x^{2} + 2 \, x e^{2} + 2 \, x + 2 \, e^{\left (3 \, x^{2}\right )}\right )} + 75 \, x e^{\left (9 \, x^{2} + 2 \, x e^{2} + 2 \, x + e^{\left (3 \, x^{2}\right )}\right )} + 125 \, x e^{\left (9 \, x^{2} + 2 \, x e^{2} + 2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 22, normalized size = 0.81
method | result | size |
risch | \(\frac {24 \,{\mathrm e}^{-\left ({\mathrm e}^{2}+1\right ) x}}{\left (5+{\mathrm e}^{{\mathrm e}^{3 x^{2}}}\right )^{2}}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.64, size = 44, normalized size = 1.63 \begin {gather*} \frac {24}{e^{\left (x e^{2} + x + 2 \, e^{\left (3 \, x^{2}\right )}\right )} + 10 \, e^{\left (x e^{2} + x + e^{\left (3 \, x^{2}\right )}\right )} + 25 \, e^{\left (x e^{2} + x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.16, size = 34, normalized size = 1.26 \begin {gather*} \frac {24\,{\mathrm {e}}^{-x-x\,{\mathrm {e}}^2}}{10\,{\mathrm {e}}^{{\mathrm {e}}^{3\,x^2}}+{\mathrm {e}}^{2\,{\mathrm {e}}^{3\,x^2}}+25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 48, normalized size = 1.78 \begin {gather*} \frac {24}{e^{x + x e^{2}} e^{2 e^{3 x^{2}}} + 10 e^{x + x e^{2}} e^{e^{3 x^{2}}} + 25 e^{x + x e^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________