Optimal. Leaf size=25 \[ \frac {x}{e^x-\frac {x^2}{4}+\frac {3-2 x}{\log (2)}} \]
________________________________________________________________________________________
Rubi [F] time = 1.46, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {48 \log (2)+e^x (16-16 x) \log ^2(2)+4 x^2 \log ^2(2)}{144-192 x+64 x^2+\left (-24 x^2+16 x^3\right ) \log (2)+16 e^{2 x} \log ^2(2)+x^4 \log ^2(2)+e^x \left ((96-64 x) \log (2)-8 x^2 \log ^2(2)\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 \log (2) \left (12-4 e^x (-1+x) \log (2)+x^2 \log (2)\right )}{\left (8 x+x^2 \log (2)-4 \left (3+e^x \log (2)\right )\right )^2} \, dx\\ &=(4 \log (2)) \int \frac {12-4 e^x (-1+x) \log (2)+x^2 \log (2)}{\left (8 x+x^2 \log (2)-4 \left (3+e^x \log (2)\right )\right )^2} \, dx\\ &=(4 \log (2)) \int \left (\frac {x \left (20-2 x (4-\log (2))-x^2 \log (2)\right )}{\left (12-8 x+4 e^x \log (2)-x^2 \log (2)\right )^2}+\frac {-1+x}{-12+8 x-4 e^x \log (2)+x^2 \log (2)}\right ) \, dx\\ &=(4 \log (2)) \int \frac {x \left (20-2 x (4-\log (2))-x^2 \log (2)\right )}{\left (12-8 x+4 e^x \log (2)-x^2 \log (2)\right )^2} \, dx+(4 \log (2)) \int \frac {-1+x}{-12+8 x-4 e^x \log (2)+x^2 \log (2)} \, dx\\ &=(4 \log (2)) \int \left (\frac {20 x}{\left (-12+8 x-4 e^x \log (2)+x^2 \log (2)\right )^2}+\frac {2 x^2 (-4+\log (2))}{\left (-12+8 x-4 e^x \log (2)+x^2 \log (2)\right )^2}-\frac {x^3 \log (2)}{\left (-12+8 x-4 e^x \log (2)+x^2 \log (2)\right )^2}\right ) \, dx+(4 \log (2)) \int \left (\frac {x}{-12+8 x-4 e^x \log (2)+x^2 \log (2)}-\frac {1}{-12+8 x+x^2 \log (2)-e^x \log (16)}\right ) \, dx\\ &=(4 \log (2)) \int \frac {x}{-12+8 x-4 e^x \log (2)+x^2 \log (2)} \, dx-(4 \log (2)) \int \frac {1}{-12+8 x+x^2 \log (2)-e^x \log (16)} \, dx+(80 \log (2)) \int \frac {x}{\left (-12+8 x-4 e^x \log (2)+x^2 \log (2)\right )^2} \, dx-(8 (4-\log (2)) \log (2)) \int \frac {x^2}{\left (-12+8 x-4 e^x \log (2)+x^2 \log (2)\right )^2} \, dx-\left (4 \log ^2(2)\right ) \int \frac {x^3}{\left (-12+8 x-4 e^x \log (2)+x^2 \log (2)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.71, size = 26, normalized size = 1.04 \begin {gather*} \frac {4 x \log (2)}{12-8 x+4 e^x \log (2)-x^2 \log (2)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.96, size = 24, normalized size = 0.96 \begin {gather*} -\frac {4 \, x \log \relax (2)}{x^{2} \log \relax (2) - 4 \, e^{x} \log \relax (2) + 8 \, x - 12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 24, normalized size = 0.96 \begin {gather*} -\frac {4 \, x \log \relax (2)}{x^{2} \log \relax (2) - 4 \, e^{x} \log \relax (2) + 8 \, x - 12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 25, normalized size = 1.00
method | result | size |
risch | \(-\frac {4 x \ln \relax (2)}{x^{2} \ln \relax (2)-4 \,{\mathrm e}^{x} \ln \relax (2)+8 x -12}\) | \(25\) |
norman | \(\frac {-2 \ln \relax (2)^{2} {\mathrm e}^{x}+\frac {x^{2} \ln \relax (2)^{2}}{2}-6 \ln \relax (2)}{x^{2} \ln \relax (2)-4 \,{\mathrm e}^{x} \ln \relax (2)+8 x -12}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.57, size = 24, normalized size = 0.96 \begin {gather*} -\frac {4 \, x \log \relax (2)}{x^{2} \log \relax (2) - 4 \, e^{x} \log \relax (2) + 8 \, x - 12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.23, size = 24, normalized size = 0.96 \begin {gather*} -\frac {4\,x\,\ln \relax (2)}{8\,x+x^2\,\ln \relax (2)-4\,{\mathrm {e}}^x\,\ln \relax (2)-12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.17, size = 26, normalized size = 1.04 \begin {gather*} \frac {4 x \log {\relax (2 )}}{- x^{2} \log {\relax (2 )} - 8 x + 4 e^{x} \log {\relax (2 )} + 12} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________