Optimal. Leaf size=16 \[ \frac {x}{\left (3-\frac {1}{x^2}+x\right ) \log ^2(4)} \]
________________________________________________________________________________________
Rubi [B] time = 0.23, antiderivative size = 44, normalized size of antiderivative = 2.75, number of steps used = 6, number of rules used = 5, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.116, Rules used = {12, 1593, 6688, 2102, 1588} \begin {gather*} \frac {3 x^2}{\left (-x^3-3 x^2+1\right ) \log ^2(4)}-\frac {1}{\left (-x^3-3 x^2+1\right ) \log ^2(4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 1588
Rule 1593
Rule 2102
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \frac {-3 x^2+3 x^4}{1-6 x^2-2 x^3+9 x^4+6 x^5+x^6} \, dx}{\log ^2(4)}\\ &=\frac {\int \frac {x^2 \left (-3+3 x^2\right )}{1-6 x^2-2 x^3+9 x^4+6 x^5+x^6} \, dx}{\log ^2(4)}\\ &=\frac {\int \frac {3 x^2 \left (-1+x^2\right )}{\left (1-3 x^2-x^3\right )^2} \, dx}{\log ^2(4)}\\ &=\frac {3 \int \frac {x^2 \left (-1+x^2\right )}{\left (1-3 x^2-x^3\right )^2} \, dx}{\log ^2(4)}\\ &=\frac {3 x^2}{\left (1-3 x^2-x^3\right ) \log ^2(4)}+\frac {3 \int \frac {-2 x-x^2}{\left (1-3 x^2-x^3\right )^2} \, dx}{\log ^2(4)}\\ &=-\frac {1}{\left (1-3 x^2-x^3\right ) \log ^2(4)}+\frac {3 x^2}{\left (1-3 x^2-x^3\right ) \log ^2(4)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 24, normalized size = 1.50 \begin {gather*} \frac {1-3 x^2}{\left (-1+3 x^2+x^3\right ) \log ^2(4)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 25, normalized size = 1.56 \begin {gather*} -\frac {3 \, x^{2} - 1}{4 \, {\left (x^{3} + 3 \, x^{2} - 1\right )} \log \relax (2)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 25, normalized size = 1.56 \begin {gather*} -\frac {3 \, x^{2} - 1}{4 \, {\left (x^{3} + 3 \, x^{2} - 1\right )} \log \relax (2)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 26, normalized size = 1.62
method | result | size |
gosper | \(-\frac {3 x^{2}-1}{4 \ln \relax (2)^{2} \left (x^{3}+3 x^{2}-1\right )}\) | \(26\) |
default | \(\frac {-\frac {3 x^{2}}{4}+\frac {1}{4}}{\ln \relax (2)^{2} \left (x^{3}+3 x^{2}-1\right )}\) | \(26\) |
risch | \(\frac {-3 x^{2}+1}{4 \ln \relax (2)^{2} \left (x^{3}+3 x^{2}-1\right )}\) | \(26\) |
norman | \(\frac {-\frac {3 x^{2}}{4 \ln \relax (2)}+\frac {1}{4 \ln \relax (2)}}{\left (x^{3}+3 x^{2}-1\right ) \ln \relax (2)}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 25, normalized size = 1.56 \begin {gather*} -\frac {3 \, x^{2} - 1}{4 \, {\left (x^{3} + 3 \, x^{2} - 1\right )} \log \relax (2)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.04, size = 25, normalized size = 1.56 \begin {gather*} -\frac {3\,x^2-1}{4\,{\ln \relax (2)}^2\,\left (x^3+3\,x^2-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.30, size = 32, normalized size = 2.00 \begin {gather*} \frac {1 - 3 x^{2}}{4 x^{3} \log {\relax (2 )}^{2} + 12 x^{2} \log {\relax (2 )}^{2} - 4 \log {\relax (2 )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________