Optimal. Leaf size=20 \[ e^{2 x}+\frac {6+2 x+\log (\log (x))}{1+x} \]
________________________________________________________________________________________
Rubi [F] time = 1.14, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1+x+\left (-4 x+e^{2 x} \left (2 x+4 x^2+2 x^3\right )\right ) \log (x)-x \log (x) \log (\log (x))}{\left (x+2 x^2+x^3\right ) \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1+x+\left (-4 x+e^{2 x} \left (2 x+4 x^2+2 x^3\right )\right ) \log (x)-x \log (x) \log (\log (x))}{x \left (1+2 x+x^2\right ) \log (x)} \, dx\\ &=\int \frac {1+x+\left (-4 x+e^{2 x} \left (2 x+4 x^2+2 x^3\right )\right ) \log (x)-x \log (x) \log (\log (x))}{x (1+x)^2 \log (x)} \, dx\\ &=\int \frac {1+x+x \log (x) \left (2 \left (-2+e^{2 x} (1+x)^2\right )-\log (\log (x))\right )}{x (1+x)^2 \log (x)} \, dx\\ &=\int \left (2 e^{2 x}-\frac {4}{(1+x)^2}+\frac {1}{(1+x)^2 \log (x)}+\frac {1}{x (1+x)^2 \log (x)}-\frac {\log (\log (x))}{(1+x)^2}\right ) \, dx\\ &=\frac {4}{1+x}+2 \int e^{2 x} \, dx+\int \frac {1}{(1+x)^2 \log (x)} \, dx+\int \frac {1}{x (1+x)^2 \log (x)} \, dx-\int \frac {\log (\log (x))}{(1+x)^2} \, dx\\ &=e^{2 x}+\frac {4}{1+x}+\int \frac {1}{(1+x)^2 \log (x)} \, dx+\int \frac {1}{x (1+x)^2 \log (x)} \, dx-\int \frac {\log (\log (x))}{(1+x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.24, size = 22, normalized size = 1.10 \begin {gather*} e^{2 x}+\frac {4}{1+x}+\frac {\log (\log (x))}{1+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 19, normalized size = 0.95 \begin {gather*} \frac {{\left (x + 1\right )} e^{\left (2 \, x\right )} + \log \left (\log \relax (x)\right ) + 4}{x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 21, normalized size = 1.05 \begin {gather*} \frac {x e^{\left (2 \, x\right )} + e^{\left (2 \, x\right )} + \log \left (\log \relax (x)\right ) + 4}{x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 29, normalized size = 1.45
method | result | size |
risch | \(\frac {\ln \left (\ln \relax (x )\right )}{x +1}+\frac {x \,{\mathrm e}^{2 x}+{\mathrm e}^{2 x}+4}{x +1}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.46, size = 19, normalized size = 0.95 \begin {gather*} \frac {{\left (x + 1\right )} e^{\left (2 \, x\right )} + \log \left (\log \relax (x)\right ) + 4}{x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.18, size = 21, normalized size = 1.05 \begin {gather*} \frac {{\mathrm {e}}^{2\,x}+\ln \left (\ln \relax (x)\right )+x\,{\mathrm {e}}^{2\,x}+4}{x+1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.46, size = 17, normalized size = 0.85 \begin {gather*} e^{2 x} + \frac {\log {\left (\log {\relax (x )} \right )}}{x + 1} + \frac {4}{x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________