Optimal. Leaf size=23 \[ e^{-\frac {2}{9 \left (e^3-x\right )^2 (-5+x) x}} \]
________________________________________________________________________________________
Rubi [A] time = 1.53, antiderivative size = 25, normalized size of antiderivative = 1.09, number of steps used = 3, number of rules used = 3, integrand size = 142, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.021, Rules used = {6688, 12, 6706} \begin {gather*} e^{\frac {2}{9 (5-x) \left (e^3-x\right )^2 x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6688
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-\frac {2}{9 \left (e^3-x\right )^2 (-5+x) x}} \left (-10 e^3+2 \left (15+2 e^3\right ) x-8 x^2\right )}{9 (5-x)^2 \left (e^3-x\right )^3 x^2} \, dx\\ &=\frac {1}{9} \int \frac {e^{-\frac {2}{9 \left (e^3-x\right )^2 (-5+x) x}} \left (-10 e^3+2 \left (15+2 e^3\right ) x-8 x^2\right )}{(5-x)^2 \left (e^3-x\right )^3 x^2} \, dx\\ &=e^{\frac {2}{9 (5-x) \left (e^3-x\right )^2 x}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.46, size = 23, normalized size = 1.00 \begin {gather*} e^{-\frac {2}{9 \left (e^3-x\right )^2 (-5+x) x}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 37, normalized size = 1.61 \begin {gather*} e^{\left (-\frac {2}{9 \, {\left (x^{4} - 5 \, x^{3} + {\left (x^{2} - 5 \, x\right )} e^{6} - 2 \, {\left (x^{3} - 5 \, x^{2}\right )} e^{3}\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.64, size = 29, normalized size = 1.26
method | result | size |
risch | \({\mathrm e}^{\frac {2}{9 x \left (x -5\right ) \left (2 x \,{\mathrm e}^{3}-x^{2}-{\mathrm e}^{6}\right )}}\) | \(29\) |
gosper | \({\mathrm e}^{-\frac {2}{9 x \left (x \,{\mathrm e}^{6}-2 x^{2} {\mathrm e}^{3}+x^{3}-5 \,{\mathrm e}^{6}+10 x \,{\mathrm e}^{3}-5 x^{2}\right )}}\) | \(42\) |
norman | \(\frac {x^{4} {\mathrm e}^{-\frac {2}{\left (9 x^{2}-45 x \right ) {\mathrm e}^{6}+\left (-18 x^{3}+90 x^{2}\right ) {\mathrm e}^{3}+9 x^{4}-45 x^{3}}}+\left ({\mathrm e}^{6}+10 \,{\mathrm e}^{3}\right ) x^{2} {\mathrm e}^{-\frac {2}{\left (9 x^{2}-45 x \right ) {\mathrm e}^{6}+\left (-18 x^{3}+90 x^{2}\right ) {\mathrm e}^{3}+9 x^{4}-45 x^{3}}}+\left (-2 \,{\mathrm e}^{3}-5\right ) x^{3} {\mathrm e}^{-\frac {2}{\left (9 x^{2}-45 x \right ) {\mathrm e}^{6}+\left (-18 x^{3}+90 x^{2}\right ) {\mathrm e}^{3}+9 x^{4}-45 x^{3}}}-5 x \,{\mathrm e}^{6} {\mathrm e}^{-\frac {2}{\left (9 x^{2}-45 x \right ) {\mathrm e}^{6}+\left (-18 x^{3}+90 x^{2}\right ) {\mathrm e}^{3}+9 x^{4}-45 x^{3}}}}{x \left (x -5\right ) \left (-x +{\mathrm e}^{3}\right )^{2}}\) | \(229\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.05, size = 125, normalized size = 5.43 \begin {gather*} e^{\left (\frac {2 \, e^{\left (-6\right )}}{45 \, x} - \frac {2}{9 \, {\left (x^{2} {\left (e^{6} - 5 \, e^{3}\right )} - 2 \, x {\left (e^{9} - 5 \, e^{6}\right )} + e^{12} - 5 \, e^{9}\right )}} - \frac {10}{9 \, {\left (x {\left (e^{12} - 10 \, e^{9} + 25 \, e^{6}\right )} - e^{15} + 10 \, e^{12} - 25 \, e^{9}\right )}} + \frac {4}{9 \, {\left (x {\left (e^{9} - 10 \, e^{6} + 25 \, e^{3}\right )} - e^{12} + 10 \, e^{9} - 25 \, e^{6}\right )}} - \frac {2}{45 \, {\left (x {\left (e^{6} - 10 \, e^{3} + 25\right )} - 5 \, e^{6} + 50 \, e^{3} - 125\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 4.52, size = 62, normalized size = 2.70 \begin {gather*} {\mathrm {e}}^{\frac {2\,{\mathrm {e}}^{-6}}{45\,x}-\frac {2}{45\,{\left ({\mathrm {e}}^3-5\right )}^2\,\left (x-5\right )}-\frac {2\,{\mathrm {e}}^{-6}\,\left (5\,x-10\,{\mathrm {e}}^3+3\,{\mathrm {e}}^6-2\,x\,{\mathrm {e}}^3\right )}{9\,{\left ({\mathrm {e}}^3-5\right )}^2\,\left (x^2-2\,{\mathrm {e}}^3\,x+{\mathrm {e}}^6\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.58, size = 39, normalized size = 1.70 \begin {gather*} e^{- \frac {2}{9 x^{4} - 45 x^{3} + \left (9 x^{2} - 45 x\right ) e^{6} + \left (- 18 x^{3} + 90 x^{2}\right ) e^{3}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________