Optimal. Leaf size=22 \[ \left (25+e^{\frac {1}{2} x (15+x)+2 x (2+\log (x))}\right ) x \]
________________________________________________________________________________________
Rubi [B] time = 0.07, antiderivative size = 48, normalized size of antiderivative = 2.18, number of steps used = 3, number of rules used = 2, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.050, Rules used = {12, 2288} \begin {gather*} \frac {e^{\frac {1}{2} \left (x^2+23 x\right )} x^{2 x} \left (2 x^2+27 x+4 x \log (x)\right )}{2 x+4 \log (x)+27}+25 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \left (50+e^{\frac {1}{2} \left (23 x+x^2+4 x \log (x)\right )} \left (2+27 x+2 x^2+4 x \log (x)\right )\right ) \, dx\\ &=25 x+\frac {1}{2} \int e^{\frac {1}{2} \left (23 x+x^2+4 x \log (x)\right )} \left (2+27 x+2 x^2+4 x \log (x)\right ) \, dx\\ &=25 x+\frac {e^{\frac {1}{2} \left (23 x+x^2\right )} x^{2 x} \left (27 x+2 x^2+4 x \log (x)\right )}{27+2 x+4 \log (x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 27, normalized size = 1.23 \begin {gather*} 25 x+e^{\frac {23 x}{2}+\frac {x^2}{2}} x^{1+2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.53, size = 21, normalized size = 0.95 \begin {gather*} x e^{\left (\frac {1}{2} \, x^{2} + 2 \, x \log \relax (x) + \frac {23}{2} \, x\right )} + 25 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 21, normalized size = 0.95 \begin {gather*} x e^{\left (\frac {1}{2} \, x^{2} + 2 \, x \log \relax (x) + \frac {23}{2} \, x\right )} + 25 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 19, normalized size = 0.86
method | result | size |
risch | \(25 x +x^{2 x} {\mathrm e}^{\frac {x \left (x +23\right )}{2}} x\) | \(19\) |
default | \(25 x +{\mathrm e}^{2 x \ln \relax (x )+\frac {x^{2}}{2}+\frac {23 x}{2}} x\) | \(23\) |
norman | \(25 x +{\mathrm e}^{2 x \ln \relax (x )+\frac {x^{2}}{2}+\frac {23 x}{2}} x\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.62, size = 21, normalized size = 0.95 \begin {gather*} x e^{\left (\frac {1}{2} \, x^{2} + 2 \, x \log \relax (x) + \frac {23}{2} \, x\right )} + 25 \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.13, size = 20, normalized size = 0.91 \begin {gather*} x\,\left (x^{2\,x}\,{\mathrm {e}}^{\frac {x^2}{2}+\frac {23\,x}{2}}+25\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 22, normalized size = 1.00 \begin {gather*} x e^{\frac {x^{2}}{2} + 2 x \log {\relax (x )} + \frac {23 x}{2}} + 25 x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________