Optimal. Leaf size=22 \[ \frac {1}{75} e^{2+\frac {400 e^x \log ^2(x)}{9 x^2}} \]
________________________________________________________________________________________
Rubi [F] time = 2.74, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {2 \left (9 x^2+200 e^x \log ^2(x)\right )}{9 x^2}} \left (32 e^x \log (x)+e^x (-32+16 x) \log ^2(x)\right )}{27 x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{27} \int \frac {e^{\frac {2 \left (9 x^2+200 e^x \log ^2(x)\right )}{9 x^2}} \left (32 e^x \log (x)+e^x (-32+16 x) \log ^2(x)\right )}{x^3} \, dx\\ &=\frac {1}{27} \int \frac {16 e^{2+x+\frac {400 e^x \log ^2(x)}{9 x^2}} \log (x) (2+(-2+x) \log (x))}{x^3} \, dx\\ &=\frac {16}{27} \int \frac {e^{2+x+\frac {400 e^x \log ^2(x)}{9 x^2}} \log (x) (2+(-2+x) \log (x))}{x^3} \, dx\\ &=\frac {16}{27} \int \left (\frac {2 e^{2+x+\frac {400 e^x \log ^2(x)}{9 x^2}} \log (x)}{x^3}+\frac {e^{2+x+\frac {400 e^x \log ^2(x)}{9 x^2}} (-2+x) \log ^2(x)}{x^3}\right ) \, dx\\ &=\frac {16}{27} \int \frac {e^{2+x+\frac {400 e^x \log ^2(x)}{9 x^2}} (-2+x) \log ^2(x)}{x^3} \, dx+\frac {32}{27} \int \frac {e^{2+x+\frac {400 e^x \log ^2(x)}{9 x^2}} \log (x)}{x^3} \, dx\\ &=\frac {16}{27} \int \left (-\frac {2 e^{2+x+\frac {400 e^x \log ^2(x)}{9 x^2}} \log ^2(x)}{x^3}+\frac {e^{2+x+\frac {400 e^x \log ^2(x)}{9 x^2}} \log ^2(x)}{x^2}\right ) \, dx+\frac {32}{27} \int \frac {e^{2+x+\frac {400 e^x \log ^2(x)}{9 x^2}} \log (x)}{x^3} \, dx\\ &=\frac {16}{27} \int \frac {e^{2+x+\frac {400 e^x \log ^2(x)}{9 x^2}} \log ^2(x)}{x^2} \, dx+\frac {32}{27} \int \frac {e^{2+x+\frac {400 e^x \log ^2(x)}{9 x^2}} \log (x)}{x^3} \, dx-\frac {32}{27} \int \frac {e^{2+x+\frac {400 e^x \log ^2(x)}{9 x^2}} \log ^2(x)}{x^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.29, size = 22, normalized size = 1.00 \begin {gather*} \frac {1}{75} e^{2+\frac {400 e^x \log ^2(x)}{9 x^2}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.13, size = 22, normalized size = 1.00 \begin {gather*} \frac {1}{75} \, e^{\left (\frac {2 \, {\left (200 \, e^{x} \log \relax (x)^{2} + 9 \, x^{2}\right )}}{9 \, x^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 16, normalized size = 0.73 \begin {gather*} \frac {1}{75} \, e^{\left (\frac {400 \, e^{x} \log \relax (x)^{2}}{9 \, x^{2}} + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 23, normalized size = 1.05
method | result | size |
risch | \(\frac {{\mathrm e}^{\frac {\frac {400 \,{\mathrm e}^{x} \ln \relax (x )^{2}}{9}+2 x^{2}}{x^{2}}}}{75}\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.82, size = 16, normalized size = 0.73 \begin {gather*} \frac {1}{75} \, e^{\left (\frac {400 \, e^{x} \log \relax (x)^{2}}{9 \, x^{2}} + 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.22, size = 16, normalized size = 0.73 \begin {gather*} \frac {{\mathrm {e}}^2\,{\mathrm {e}}^{\frac {400\,{\mathrm {e}}^x\,{\ln \relax (x)}^2}{9\,x^2}}}{75} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.49, size = 22, normalized size = 1.00 \begin {gather*} \frac {e^{\frac {2 \left (x^{2} + \frac {200 e^{x} \log {\relax (x )}^{2}}{9}\right )}{x^{2}}}}{75} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________