Optimal. Leaf size=19 \[ \frac {5}{x}+x-\left (5+e^x+x^2\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 37, normalized size of antiderivative = 1.95, number of steps used = 13, number of rules used = 4, integrand size = 49, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.082, Rules used = {14, 2194, 2196, 2176} \begin {gather*} -x^4-2 e^x x^2-10 x^2+x-10 e^x-e^{2 x}+\frac {5}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-2 e^{2 x}-2 e^x \left (5+2 x+x^2\right )+\frac {-5+x^2-20 x^3-4 x^5}{x^2}\right ) \, dx\\ &=-\left (2 \int e^{2 x} \, dx\right )-2 \int e^x \left (5+2 x+x^2\right ) \, dx+\int \frac {-5+x^2-20 x^3-4 x^5}{x^2} \, dx\\ &=-e^{2 x}-2 \int \left (5 e^x+2 e^x x+e^x x^2\right ) \, dx+\int \left (1-\frac {5}{x^2}-20 x-4 x^3\right ) \, dx\\ &=-e^{2 x}+\frac {5}{x}+x-10 x^2-x^4-2 \int e^x x^2 \, dx-4 \int e^x x \, dx-10 \int e^x \, dx\\ &=-10 e^x-e^{2 x}+\frac {5}{x}+x-4 e^x x-10 x^2-2 e^x x^2-x^4+4 \int e^x \, dx+4 \int e^x x \, dx\\ &=-6 e^x-e^{2 x}+\frac {5}{x}+x-10 x^2-2 e^x x^2-x^4-4 \int e^x \, dx\\ &=-10 e^x-e^{2 x}+\frac {5}{x}+x-10 x^2-2 e^x x^2-x^4\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 34, normalized size = 1.79 \begin {gather*} -e^{2 x}+\frac {5}{x}+x-10 x^2-x^4-2 e^x \left (5+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.66, size = 37, normalized size = 1.95 \begin {gather*} -\frac {x^{5} + 10 \, x^{3} - x^{2} + x e^{\left (2 \, x\right )} + 2 \, {\left (x^{3} + 5 \, x\right )} e^{x} - 5}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.16, size = 38, normalized size = 2.00 \begin {gather*} -\frac {x^{5} + 2 \, x^{3} e^{x} + 10 \, x^{3} - x^{2} + x e^{\left (2 \, x\right )} + 10 \, x e^{x} - 5}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 34, normalized size = 1.79
method | result | size |
risch | \(-10 x^{2}+x +\frac {5}{x}-x^{4}-{\mathrm e}^{2 x}+\left (-2 x^{2}-10\right ) {\mathrm e}^{x}\) | \(34\) |
default | \(-10 x^{2}+x +\frac {5}{x}-x^{4}-{\mathrm e}^{2 x}-2 \,{\mathrm e}^{x} x^{2}-10 \,{\mathrm e}^{x}\) | \(35\) |
norman | \(\frac {5+x^{2}-10 x^{3}-x^{5}-x \,{\mathrm e}^{2 x}-10 \,{\mathrm e}^{x} x -2 \,{\mathrm e}^{x} x^{3}}{x}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 46, normalized size = 2.42 \begin {gather*} -x^{4} - 10 \, x^{2} - 2 \, {\left (x^{2} - 2 \, x + 2\right )} e^{x} - 4 \, {\left (x - 1\right )} e^{x} + x + \frac {5}{x} - e^{\left (2 \, x\right )} - 10 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.01, size = 33, normalized size = 1.74 \begin {gather*} x-{\mathrm {e}}^{2\,x}-10\,{\mathrm {e}}^x-x^2\,\left (2\,{\mathrm {e}}^x+10\right )+\frac {5}{x}-x^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.14, size = 29, normalized size = 1.53 \begin {gather*} - x^{4} - 10 x^{2} + x + \left (- 2 x^{2} - 10\right ) e^{x} - e^{2 x} + \frac {5}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________