Optimal. Leaf size=30 \[ x+\frac {-e^x+x}{\left (5+e^{2 e^6}+25 x^2-\log (x)\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 13.54, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-132 x-e^{6 e^6} x-1800 x^3-9375 x^5-15625 x^7+e^{4 e^6} \left (-15 x-75 x^3\right )+e^x \left (2+5 x-100 x^2+25 x^3\right )+e^{2 e^6} \left (-76 x+e^x x-750 x^3-1875 x^5\right )+\left (76 x+3 e^{4 e^6} x-e^x x+750 x^3+1875 x^5+e^{2 e^6} \left (30 x+150 x^3\right )\right ) \log (x)+\left (-15 x-3 e^{2 e^6} x-75 x^3\right ) \log ^2(x)+x \log ^3(x)}{-125 x-e^{6 e^6} x-1875 x^3-9375 x^5-15625 x^7+e^{4 e^6} \left (-15 x-75 x^3\right )+e^{2 e^6} \left (-75 x-750 x^3-1875 x^5\right )+\left (75 x+3 e^{4 e^6} x+750 x^3+1875 x^5+e^{2 e^6} \left (30 x+150 x^3\right )\right ) \log (x)+\left (-15 x-3 e^{2 e^6} x-75 x^3\right ) \log ^2(x)+x \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-132 x-e^{6 e^6} x-1800 x^3-9375 x^5-15625 x^7+e^{4 e^6} \left (-15 x-75 x^3\right )+e^x \left (2+5 x-100 x^2+25 x^3\right )+e^{2 e^6} \left (-76 x+e^x x-750 x^3-1875 x^5\right )+\left (76 x+3 e^{4 e^6} x-e^x x+750 x^3+1875 x^5+e^{2 e^6} \left (30 x+150 x^3\right )\right ) \log (x)+\left (-15 x-3 e^{2 e^6} x-75 x^3\right ) \log ^2(x)+x \log ^3(x)}{\left (-125-e^{6 e^6}\right ) x-1875 x^3-9375 x^5-15625 x^7+e^{4 e^6} \left (-15 x-75 x^3\right )+e^{2 e^6} \left (-75 x-750 x^3-1875 x^5\right )+\left (75 x+3 e^{4 e^6} x+750 x^3+1875 x^5+e^{2 e^6} \left (30 x+150 x^3\right )\right ) \log (x)+\left (-15 x-3 e^{2 e^6} x-75 x^3\right ) \log ^2(x)+x \log ^3(x)} \, dx\\ &=\int \frac {\left (-132-e^{6 e^6}\right ) x-1800 x^3-9375 x^5-15625 x^7+e^{4 e^6} \left (-15 x-75 x^3\right )+e^x \left (2+5 x-100 x^2+25 x^3\right )+e^{2 e^6} \left (-76 x+e^x x-750 x^3-1875 x^5\right )+\left (76 x+3 e^{4 e^6} x-e^x x+750 x^3+1875 x^5+e^{2 e^6} \left (30 x+150 x^3\right )\right ) \log (x)+\left (-15 x-3 e^{2 e^6} x-75 x^3\right ) \log ^2(x)+x \log ^3(x)}{\left (-125-e^{6 e^6}\right ) x-1875 x^3-9375 x^5-15625 x^7+e^{4 e^6} \left (-15 x-75 x^3\right )+e^{2 e^6} \left (-75 x-750 x^3-1875 x^5\right )+\left (75 x+3 e^{4 e^6} x+750 x^3+1875 x^5+e^{2 e^6} \left (30 x+150 x^3\right )\right ) \log (x)+\left (-15 x-3 e^{2 e^6} x-75 x^3\right ) \log ^2(x)+x \log ^3(x)} \, dx\\ &=\int \frac {e^{6 e^6} x-e^{2 e^6+x} x+15 e^{4 e^6} x \left (1+5 x^2\right )-e^x \left (2+5 x-100 x^2+25 x^3\right )+e^{2 e^6} x \left (76+750 x^2+1875 x^4\right )+x \left (132+1800 x^2+9375 x^4+15625 x^6\right )-x \left (76+3 e^{4 e^6}-e^x+750 x^2+1875 x^4+30 e^{2 e^6} \left (1+5 x^2\right )\right ) \log (x)+3 x \left (5+e^{2 e^6}+25 x^2\right ) \log ^2(x)-x \log ^3(x)}{x \left (5 \left (1+\frac {e^{2 e^6}}{5}\right )+25 x^2-\log (x)\right )^3} \, dx\\ &=\int \left (\frac {e^{6 e^6}}{\left (5 \left (1+\frac {e^{2 e^6}}{5}\right )+25 x^2-\log (x)\right )^3}+\frac {15 e^{4 e^6} \left (1+5 x^2\right )}{\left (5 \left (1+\frac {e^{2 e^6}}{5}\right )+25 x^2-\log (x)\right )^3}+\frac {e^{2 e^6} \left (76+750 x^2+1875 x^4\right )}{\left (5 \left (1+\frac {e^{2 e^6}}{5}\right )+25 x^2-\log (x)\right )^3}+\frac {132+1800 x^2+9375 x^4+15625 x^6}{\left (5 \left (1+\frac {e^{2 e^6}}{5}\right )+25 x^2-\log (x)\right )^3}+\frac {30 e^{2 e^6} \left (-1-5 x^2\right ) \log (x)}{\left (5 \left (1+\frac {e^{2 e^6}}{5}\right )+25 x^2-\log (x)\right )^3}+\frac {3 \left (5+e^{2 e^6}+25 x^2\right ) \log ^2(x)}{\left (5 \left (1+\frac {e^{2 e^6}}{5}\right )+25 x^2-\log (x)\right )^3}+\frac {76 \left (1+\frac {3 e^{4 e^6}}{76}\right ) \log (x)}{\left (-5 \left (1+\frac {e^{2 e^6}}{5}\right )-25 x^2+\log (x)\right )^3}+\frac {750 x^2 \log (x)}{\left (-5 \left (1+\frac {e^{2 e^6}}{5}\right )-25 x^2+\log (x)\right )^3}+\frac {1875 x^4 \log (x)}{\left (-5 \left (1+\frac {e^{2 e^6}}{5}\right )-25 x^2+\log (x)\right )^3}+\frac {\log ^3(x)}{\left (-5 \left (1+\frac {e^{2 e^6}}{5}\right )-25 x^2+\log (x)\right )^3}+\frac {e^x \left (-2-5 \left (1+\frac {e^{2 e^6}}{5}\right ) x+100 x^2-25 x^3+x \log (x)\right )}{x \left (5 \left (1+\frac {e^{2 e^6}}{5}\right )+25 x^2-\log (x)\right )^3}\right ) \, dx\\ &=3 \int \frac {\left (5+e^{2 e^6}+25 x^2\right ) \log ^2(x)}{\left (5 \left (1+\frac {e^{2 e^6}}{5}\right )+25 x^2-\log (x)\right )^3} \, dx+750 \int \frac {x^2 \log (x)}{\left (-5 \left (1+\frac {e^{2 e^6}}{5}\right )-25 x^2+\log (x)\right )^3} \, dx+1875 \int \frac {x^4 \log (x)}{\left (-5 \left (1+\frac {e^{2 e^6}}{5}\right )-25 x^2+\log (x)\right )^3} \, dx+e^{2 e^6} \int \frac {76+750 x^2+1875 x^4}{\left (5 \left (1+\frac {e^{2 e^6}}{5}\right )+25 x^2-\log (x)\right )^3} \, dx+\left (30 e^{2 e^6}\right ) \int \frac {\left (-1-5 x^2\right ) \log (x)}{\left (5 \left (1+\frac {e^{2 e^6}}{5}\right )+25 x^2-\log (x)\right )^3} \, dx+\left (15 e^{4 e^6}\right ) \int \frac {1+5 x^2}{\left (5 \left (1+\frac {e^{2 e^6}}{5}\right )+25 x^2-\log (x)\right )^3} \, dx+e^{6 e^6} \int \frac {1}{\left (5 \left (1+\frac {e^{2 e^6}}{5}\right )+25 x^2-\log (x)\right )^3} \, dx+\left (76+3 e^{4 e^6}\right ) \int \frac {\log (x)}{\left (-5 \left (1+\frac {e^{2 e^6}}{5}\right )-25 x^2+\log (x)\right )^3} \, dx+\int \frac {132+1800 x^2+9375 x^4+15625 x^6}{\left (5 \left (1+\frac {e^{2 e^6}}{5}\right )+25 x^2-\log (x)\right )^3} \, dx+\int \frac {\log ^3(x)}{\left (-5 \left (1+\frac {e^{2 e^6}}{5}\right )-25 x^2+\log (x)\right )^3} \, dx+\int \frac {e^x \left (-2-5 \left (1+\frac {e^{2 e^6}}{5}\right ) x+100 x^2-25 x^3+x \log (x)\right )}{x \left (5 \left (1+\frac {e^{2 e^6}}{5}\right )+25 x^2-\log (x)\right )^3} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 31, normalized size = 1.03 \begin {gather*} x-\frac {e^x-x}{\left (-5-e^{2 e^6}-25 x^2+\log (x)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.63, size = 119, normalized size = 3.97 \begin {gather*} \frac {625 \, x^{5} + 250 \, x^{3} + x \log \relax (x)^{2} + x e^{\left (4 \, e^{6}\right )} + 10 \, {\left (5 \, x^{3} + x\right )} e^{\left (2 \, e^{6}\right )} - 2 \, {\left (25 \, x^{3} + x e^{\left (2 \, e^{6}\right )} + 5 \, x\right )} \log \relax (x) + 26 \, x - e^{x}}{625 \, x^{4} + 250 \, x^{2} + 10 \, {\left (5 \, x^{2} + 1\right )} e^{\left (2 \, e^{6}\right )} - 2 \, {\left (25 \, x^{2} + e^{\left (2 \, e^{6}\right )} + 5\right )} \log \relax (x) + \log \relax (x)^{2} + e^{\left (4 \, e^{6}\right )} + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.59, size = 132, normalized size = 4.40 \begin {gather*} \frac {625 \, x^{5} + 50 \, x^{3} e^{\left (2 \, e^{6}\right )} - 50 \, x^{3} \log \relax (x) + 250 \, x^{3} - 2 \, x e^{\left (2 \, e^{6}\right )} \log \relax (x) + x \log \relax (x)^{2} + x e^{\left (4 \, e^{6}\right )} + 10 \, x e^{\left (2 \, e^{6}\right )} - 10 \, x \log \relax (x) + 26 \, x - e^{x}}{625 \, x^{4} + 50 \, x^{2} e^{\left (2 \, e^{6}\right )} - 50 \, x^{2} \log \relax (x) + 250 \, x^{2} - 2 \, e^{\left (2 \, e^{6}\right )} \log \relax (x) + \log \relax (x)^{2} + e^{\left (4 \, e^{6}\right )} + 10 \, e^{\left (2 \, e^{6}\right )} - 10 \, \log \relax (x) + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.13, size = 28, normalized size = 0.93
method | result | size |
risch | \(x +\frac {x -{\mathrm e}^{x}}{\left (25 x^{2}+5-\ln \relax (x )+{\mathrm e}^{2 \,{\mathrm e}^{6}}\right )^{2}}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.63, size = 117, normalized size = 3.90 \begin {gather*} \frac {625 \, x^{5} + 50 \, x^{3} {\left (e^{\left (2 \, e^{6}\right )} + 5\right )} + x \log \relax (x)^{2} + x {\left (e^{\left (4 \, e^{6}\right )} + 10 \, e^{\left (2 \, e^{6}\right )} + 26\right )} - 2 \, {\left (25 \, x^{3} + x {\left (e^{\left (2 \, e^{6}\right )} + 5\right )}\right )} \log \relax (x) - e^{x}}{625 \, x^{4} + 50 \, x^{2} {\left (e^{\left (2 \, e^{6}\right )} + 5\right )} - 2 \, {\left (25 \, x^{2} + e^{\left (2 \, e^{6}\right )} + 5\right )} \log \relax (x) + \log \relax (x)^{2} + e^{\left (4 \, e^{6}\right )} + 10 \, e^{\left (2 \, e^{6}\right )} + 25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {132\,x+x\,{\mathrm {e}}^{6\,{\mathrm {e}}^6}+{\ln \relax (x)}^2\,\left (15\,x+3\,x\,{\mathrm {e}}^{2\,{\mathrm {e}}^6}+75\,x^3\right )-x\,{\ln \relax (x)}^3-\ln \relax (x)\,\left (76\,x+3\,x\,{\mathrm {e}}^{4\,{\mathrm {e}}^6}-x\,{\mathrm {e}}^x+750\,x^3+1875\,x^5+{\mathrm {e}}^{2\,{\mathrm {e}}^6}\,\left (150\,x^3+30\,x\right )\right )+1800\,x^3+9375\,x^5+15625\,x^7-{\mathrm {e}}^x\,\left (25\,x^3-100\,x^2+5\,x+2\right )+{\mathrm {e}}^{2\,{\mathrm {e}}^6}\,\left (76\,x-x\,{\mathrm {e}}^x+750\,x^3+1875\,x^5\right )+{\mathrm {e}}^{4\,{\mathrm {e}}^6}\,\left (75\,x^3+15\,x\right )}{125\,x+x\,{\mathrm {e}}^{6\,{\mathrm {e}}^6}+{\ln \relax (x)}^2\,\left (15\,x+3\,x\,{\mathrm {e}}^{2\,{\mathrm {e}}^6}+75\,x^3\right )-x\,{\ln \relax (x)}^3+{\mathrm {e}}^{2\,{\mathrm {e}}^6}\,\left (1875\,x^5+750\,x^3+75\,x\right )+1875\,x^3+9375\,x^5+15625\,x^7-\ln \relax (x)\,\left (75\,x+3\,x\,{\mathrm {e}}^{4\,{\mathrm {e}}^6}+750\,x^3+1875\,x^5+{\mathrm {e}}^{2\,{\mathrm {e}}^6}\,\left (150\,x^3+30\,x\right )\right )+{\mathrm {e}}^{4\,{\mathrm {e}}^6}\,\left (75\,x^3+15\,x\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.74, size = 139, normalized size = 4.63 \begin {gather*} x + \frac {x}{625 x^{4} + 250 x^{2} + 50 x^{2} e^{2 e^{6}} + \left (- 50 x^{2} - 10 - 2 e^{2 e^{6}}\right ) \log {\relax (x )} + \log {\relax (x )}^{2} + 25 + 10 e^{2 e^{6}} + e^{4 e^{6}}} - \frac {e^{x}}{625 x^{4} - 50 x^{2} \log {\relax (x )} + 250 x^{2} + 50 x^{2} e^{2 e^{6}} + \log {\relax (x )}^{2} - 10 \log {\relax (x )} - 2 e^{2 e^{6}} \log {\relax (x )} + 25 + 10 e^{2 e^{6}} + e^{4 e^{6}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________