Optimal. Leaf size=29 \[ \log \left (e^x \left (5-e+e^4\right ) \left (-x+\log \left (\frac {4+\frac {4}{x}}{x}\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.09, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-2-2 x-2 x^2-x^3+\left (x+x^2\right ) \log \left (\frac {4+4 x}{x^2}\right )}{-x^2-x^3+\left (x+x^2\right ) \log \left (\frac {4+4 x}{x^2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2+2 x+2 x^2+x^3-\left (x+x^2\right ) \log \left (\frac {4+4 x}{x^2}\right )}{x (1+x) \left (x-\log \left (\frac {4 (1+x)}{x^2}\right )\right )} \, dx\\ &=\int \left (\frac {2}{(1+x) \left (x-\log \left (\frac {4 (1+x)}{x^2}\right )\right )}+\frac {2}{x (1+x) \left (x-\log \left (\frac {4 (1+x)}{x^2}\right )\right )}+\frac {2 x}{(1+x) \left (x-\log \left (\frac {4 (1+x)}{x^2}\right )\right )}+\frac {x^2}{(1+x) \left (x-\log \left (\frac {4 (1+x)}{x^2}\right )\right )}-\frac {\log \left (\frac {4 (1+x)}{x^2}\right )}{x-\log \left (\frac {4 (1+x)}{x^2}\right )}\right ) \, dx\\ &=2 \int \frac {1}{(1+x) \left (x-\log \left (\frac {4 (1+x)}{x^2}\right )\right )} \, dx+2 \int \frac {1}{x (1+x) \left (x-\log \left (\frac {4 (1+x)}{x^2}\right )\right )} \, dx+2 \int \frac {x}{(1+x) \left (x-\log \left (\frac {4 (1+x)}{x^2}\right )\right )} \, dx+\int \frac {x^2}{(1+x) \left (x-\log \left (\frac {4 (1+x)}{x^2}\right )\right )} \, dx-\int \frac {\log \left (\frac {4 (1+x)}{x^2}\right )}{x-\log \left (\frac {4 (1+x)}{x^2}\right )} \, dx\\ &=2 \int \left (\frac {1}{x-\log \left (\frac {4 (1+x)}{x^2}\right )}-\frac {1}{(1+x) \left (x-\log \left (\frac {4 (1+x)}{x^2}\right )\right )}\right ) \, dx+2 \int \left (\frac {1}{x \left (x-\log \left (\frac {4 (1+x)}{x^2}\right )\right )}-\frac {1}{(1+x) \left (x-\log \left (\frac {4 (1+x)}{x^2}\right )\right )}\right ) \, dx+2 \int \frac {1}{(1+x) \left (x-\log \left (\frac {4 (1+x)}{x^2}\right )\right )} \, dx-\int \left (-1+\frac {x}{x-\log \left (\frac {4 (1+x)}{x^2}\right )}\right ) \, dx+\int \left (\frac {x}{x-\log \left (\frac {4 (1+x)}{x^2}\right )}+\frac {1}{(1+x) \left (x-\log \left (\frac {4 (1+x)}{x^2}\right )\right )}+\frac {1}{-x+\log \left (\frac {4 (1+x)}{x^2}\right )}\right ) \, dx\\ &=x+2 \int \frac {1}{x-\log \left (\frac {4 (1+x)}{x^2}\right )} \, dx+2 \int \frac {1}{x \left (x-\log \left (\frac {4 (1+x)}{x^2}\right )\right )} \, dx-2 \int \frac {1}{(1+x) \left (x-\log \left (\frac {4 (1+x)}{x^2}\right )\right )} \, dx+\int \frac {1}{(1+x) \left (x-\log \left (\frac {4 (1+x)}{x^2}\right )\right )} \, dx+\int \frac {1}{-x+\log \left (\frac {4 (1+x)}{x^2}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.19, size = 16, normalized size = 0.55 \begin {gather*} x+\log \left (x-\log \left (\frac {4 (1+x)}{x^2}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 16, normalized size = 0.55 \begin {gather*} x + \log \left (-x + \log \left (\frac {4 \, {\left (x + 1\right )}}{x^{2}}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 16, normalized size = 0.55 \begin {gather*} x + \log \left (x - \log \left (\frac {4 \, {\left (x + 1\right )}}{x^{2}}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 18, normalized size = 0.62
method | result | size |
norman | \(x +\ln \left (x -\ln \left (\frac {4 x +4}{x^{2}}\right )\right )\) | \(18\) |
risch | \(x +\ln \left (-x +\ln \left (\frac {4 x +4}{x^{2}}\right )\right )\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.58, size = 19, normalized size = 0.66 \begin {gather*} x + \log \left (-x + 2 \, \log \relax (2) + \log \left (x + 1\right ) - 2 \, \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.27, size = 17, normalized size = 0.59 \begin {gather*} x+\ln \left (x-\ln \left (\frac {4\,x+4}{x^2}\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 14, normalized size = 0.48 \begin {gather*} x + \log {\left (- x + \log {\left (\frac {4 x + 4}{x^{2}} \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________