Optimal. Leaf size=24 \[ -\frac {5}{2}+e^{e^{18 x^2}}-e^x-\frac {4 x}{e^3} \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 21, normalized size of antiderivative = 0.88, number of steps used = 6, number of rules used = 4, integrand size = 32, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {12, 2194, 6715, 2282} \begin {gather*} e^{e^{18 x^2}}-\frac {4 x}{e^3}-e^x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rule 2282
Rule 6715
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\int \left (-4-e^{3+x}+36 e^{3+e^{18 x^2}+18 x^2} x\right ) \, dx}{e^3}\\ &=-\frac {4 x}{e^3}-\frac {\int e^{3+x} \, dx}{e^3}+\frac {36 \int e^{3+e^{18 x^2}+18 x^2} x \, dx}{e^3}\\ &=-e^x-\frac {4 x}{e^3}+\frac {18 \operatorname {Subst}\left (\int e^{3+e^{18 x}+18 x} \, dx,x,x^2\right )}{e^3}\\ &=-e^x-\frac {4 x}{e^3}+\frac {\operatorname {Subst}\left (\int e^{3+x} \, dx,x,e^{18 x^2}\right )}{e^3}\\ &=e^{e^{18 x^2}}-e^x-\frac {4 x}{e^3}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 21, normalized size = 0.88 \begin {gather*} e^{e^{18 x^2}}-e^x-\frac {4 x}{e^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.61, size = 42, normalized size = 1.75 \begin {gather*} -{\left ({\left (4 \, x + e^{\left (x + 3\right )}\right )} e^{\left (18 \, x^{2}\right )} - e^{\left (18 \, x^{2} + e^{\left (18 \, x^{2}\right )} + 3\right )}\right )} e^{\left (-18 \, x^{2} - 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 23, normalized size = 0.96 \begin {gather*} -{\left (4 \, x + e^{\left (x + 3\right )} - e^{\left (e^{\left (18 \, x^{2}\right )} + 3\right )}\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 18, normalized size = 0.75
method | result | size |
risch | \(-4 x \,{\mathrm e}^{-3}-{\mathrm e}^{x}+{\mathrm e}^{{\mathrm e}^{18 x^{2}}}\) | \(18\) |
norman | \(-4 x \,{\mathrm e}^{-3}-{\mathrm e}^{x}+{\mathrm e}^{{\mathrm e}^{18 x^{2}}}\) | \(22\) |
default | \({\mathrm e}^{-3} \left (-4 x -{\mathrm e}^{x} {\mathrm e}^{3}+{\mathrm e}^{3} {\mathrm e}^{{\mathrm e}^{18 x^{2}}}\right )\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 23, normalized size = 0.96 \begin {gather*} -{\left (4 \, x + e^{\left (x + 3\right )} - e^{\left (e^{\left (18 \, x^{2}\right )} + 3\right )}\right )} e^{\left (-3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.16, size = 17, normalized size = 0.71 \begin {gather*} {\mathrm {e}}^{{\mathrm {e}}^{18\,x^2}}-{\mathrm {e}}^x-4\,x\,{\mathrm {e}}^{-3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 17, normalized size = 0.71 \begin {gather*} - \frac {4 x}{e^{3}} - e^{x} + e^{e^{18 x^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________