Optimal. Leaf size=24 \[ 5+\frac {4}{x}-4 \left (4+e^3-\log (5)-\log (x)\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 25, normalized size of antiderivative = 1.04, number of steps used = 7, number of rules used = 4, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {6, 14, 43, 2301} \begin {gather*} \frac {4}{x}-4 \log ^2(x)+8 \left (4+e^3-\log (5)\right ) \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 14
Rule 43
Rule 2301
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4+\left (32+8 e^3\right ) x-8 x \log (5)-8 x \log (x)}{x^2} \, dx\\ &=\int \frac {-4+x \left (32+8 e^3-8 \log (5)\right )-8 x \log (x)}{x^2} \, dx\\ &=\int \left (\frac {4 \left (-1+2 x \left (4+e^3-\log (5)\right )\right )}{x^2}-\frac {8 \log (x)}{x}\right ) \, dx\\ &=4 \int \frac {-1+2 x \left (4+e^3-\log (5)\right )}{x^2} \, dx-8 \int \frac {\log (x)}{x} \, dx\\ &=-4 \log ^2(x)+4 \int \left (-\frac {1}{x^2}+\frac {2 \left (4+e^3-\log (5)\right )}{x}\right ) \, dx\\ &=\frac {4}{x}+8 \left (4+e^3-\log (5)\right ) \log (x)-4 \log ^2(x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 29, normalized size = 1.21 \begin {gather*} \frac {4}{x}+32 \log (x)+8 e^3 \log (x)-8 \log (5) \log (x)-4 \log ^2(x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.88, size = 30, normalized size = 1.25 \begin {gather*} -\frac {4 \, {\left (x \log \relax (x)^{2} - 2 \, {\left (x e^{3} - x \log \relax (5) + 4 \, x\right )} \log \relax (x) - 1\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 33, normalized size = 1.38 \begin {gather*} \frac {4 \, {\left (2 \, x e^{3} \log \relax (x) - 2 \, x \log \relax (5) \log \relax (x) - x \log \relax (x)^{2} + 8 \, x \log \relax (x) + 1\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 28, normalized size = 1.17
method | result | size |
norman | \(\frac {4+\left (-8 \ln \relax (5)+8 \,{\mathrm e}^{3}+32\right ) x \ln \relax (x )-4 x \ln \relax (x )^{2}}{x}\) | \(28\) |
default | \(-4 \ln \relax (x )^{2}+8 \ln \relax (x ) {\mathrm e}^{3}-8 \ln \relax (5) \ln \relax (x )+32 \ln \relax (x )+\frac {4}{x}\) | \(29\) |
risch | \(-4 \ln \relax (x )^{2}+\frac {8 x \,{\mathrm e}^{3} \ln \relax (x )-8 x \ln \relax (5) \ln \relax (x )+32 x \ln \relax (x )+4}{x}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 28, normalized size = 1.17 \begin {gather*} 8 \, e^{3} \log \relax (x) - 8 \, \log \relax (5) \log \relax (x) - 4 \, \log \relax (x)^{2} + \frac {4}{x} + 32 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.03, size = 25, normalized size = 1.04 \begin {gather*} \ln \relax (x)\,\left (8\,{\mathrm {e}}^3-8\,\ln \relax (5)+32\right )-4\,{\ln \relax (x)}^2+\frac {4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 22, normalized size = 0.92 \begin {gather*} - 4 \log {\relax (x )}^{2} + 8 \left (- \log {\relax (5 )} + 4 + e^{3}\right ) \log {\relax (x )} + \frac {4}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________