Optimal. Leaf size=19 \[ 10-\frac {x}{1+e^x}+5 (-9+3 x) \]
________________________________________________________________________________________
Rubi [B] time = 0.26, antiderivative size = 60, normalized size of antiderivative = 3.16, number of steps used = 17, number of rules used = 12, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.387, Rules used = {6688, 6742, 2184, 2190, 2279, 2391, 2185, 2191, 2282, 36, 29, 31} \begin {gather*} -\frac {x^2}{2}+\frac {1}{2} (1-x)^2-\frac {x}{e^x+1}+16 x+(1-x) \log \left (e^x+1\right )+x \log \left (e^x+1\right )-\log \left (e^x+1\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 31
Rule 36
Rule 2184
Rule 2185
Rule 2190
Rule 2191
Rule 2279
Rule 2282
Rule 2391
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {14+15 e^{2 x}+e^x (29+x)}{\left (1+e^x\right )^2} \, dx\\ &=\int \left (15+\frac {-1+x}{1+e^x}-\frac {x}{\left (1+e^x\right )^2}\right ) \, dx\\ &=15 x+\int \frac {-1+x}{1+e^x} \, dx-\int \frac {x}{\left (1+e^x\right )^2} \, dx\\ &=\frac {1}{2} (1-x)^2+15 x-\int \frac {e^x (-1+x)}{1+e^x} \, dx+\int \frac {e^x x}{\left (1+e^x\right )^2} \, dx-\int \frac {x}{1+e^x} \, dx\\ &=\frac {1}{2} (1-x)^2+15 x-\frac {x}{1+e^x}-\frac {x^2}{2}+(1-x) \log \left (1+e^x\right )+\int \frac {1}{1+e^x} \, dx+\int \frac {e^x x}{1+e^x} \, dx+\int \log \left (1+e^x\right ) \, dx\\ &=\frac {1}{2} (1-x)^2+15 x-\frac {x}{1+e^x}-\frac {x^2}{2}+(1-x) \log \left (1+e^x\right )+x \log \left (1+e^x\right )-\int \log \left (1+e^x\right ) \, dx+\operatorname {Subst}\left (\int \frac {1}{x (1+x)} \, dx,x,e^x\right )+\operatorname {Subst}\left (\int \frac {\log (1+x)}{x} \, dx,x,e^x\right )\\ &=\frac {1}{2} (1-x)^2+15 x-\frac {x}{1+e^x}-\frac {x^2}{2}+(1-x) \log \left (1+e^x\right )+x \log \left (1+e^x\right )-\text {Li}_2\left (-e^x\right )+\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,e^x\right )-\operatorname {Subst}\left (\int \frac {1}{1+x} \, dx,x,e^x\right )-\operatorname {Subst}\left (\int \frac {\log (1+x)}{x} \, dx,x,e^x\right )\\ &=\frac {1}{2} (1-x)^2+16 x-\frac {x}{1+e^x}-\frac {x^2}{2}-\log \left (1+e^x\right )+(1-x) \log \left (1+e^x\right )+x \log \left (1+e^x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 14, normalized size = 0.74 \begin {gather*} 15 x-\frac {x}{1+e^x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 16, normalized size = 0.84 \begin {gather*} \frac {15 \, x e^{x} + 14 \, x}{e^{x} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 16, normalized size = 0.84 \begin {gather*} \frac {15 \, x e^{x} + 14 \, x}{e^{x} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 14, normalized size = 0.74
method | result | size |
risch | \(15 x -\frac {x}{{\mathrm e}^{x}+1}\) | \(14\) |
default | \(\frac {x \,{\mathrm e}^{x}}{{\mathrm e}^{x}+1}+14 \ln \left ({\mathrm e}^{x}\right )\) | \(17\) |
norman | \(\frac {14 x +15 \,{\mathrm e}^{x} x}{{\mathrm e}^{x}+1}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 14, normalized size = 0.74 \begin {gather*} 14 \, x + \frac {x e^{x}}{e^{x} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 13, normalized size = 0.68 \begin {gather*} 15\,x-\frac {x}{{\mathrm {e}}^x+1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 8, normalized size = 0.42 \begin {gather*} 15 x - \frac {x}{e^{x} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________