Optimal. Leaf size=29 \[ \frac {5 \left (e^{-2+x} \left (-2+\frac {1}{2} x^2 (3+x \log (3))\right )+\log (x)\right )}{x} \]
________________________________________________________________________________________
Rubi [B] time = 1.69, antiderivative size = 87, normalized size of antiderivative = 3.00, number of steps used = 15, number of rules used = 8, integrand size = 61, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.131, Rules used = {12, 6742, 2199, 2194, 2177, 2178, 2176, 2303} \begin {gather*} \frac {5}{2} e^{x-2} x^2 \log (3)+\frac {15 e^{x-2}}{2}-\frac {10 e^{x-2}}{x}+\frac {5}{2} e^{x-2} x (3+\log (9))-5 e^{x-2} x \log (3)-\frac {5}{2} e^{x-2} (3+\log (9))+5 e^{x-2} \log (3)+\frac {5 \log (x)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2199
Rule 2303
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {e^{-2+x} \left (20+10 e^{2-x}-20 x+15 x^2+15 x^3+\left (10 x^3+5 x^4\right ) \log (3)-10 e^{2-x} \log (x)\right )}{x^2} \, dx\\ &=\frac {1}{2} \int \left (\frac {5 e^{-2+x} (2+x) \left (2-3 x+3 x^2+x^3 \log (3)\right )}{x^2}-\frac {10 (-1+\log (x))}{x^2}\right ) \, dx\\ &=\frac {5}{2} \int \frac {e^{-2+x} (2+x) \left (2-3 x+3 x^2+x^3 \log (3)\right )}{x^2} \, dx-5 \int \frac {-1+\log (x)}{x^2} \, dx\\ &=\frac {5 \log (x)}{x}+\frac {5}{2} \int \left (3 e^{-2+x}+\frac {4 e^{-2+x}}{x^2}-\frac {4 e^{-2+x}}{x}+e^{-2+x} x^2 \log (3)+e^{-2+x} x (3+\log (9))\right ) \, dx\\ &=\frac {5 \log (x)}{x}+\frac {15}{2} \int e^{-2+x} \, dx+10 \int \frac {e^{-2+x}}{x^2} \, dx-10 \int \frac {e^{-2+x}}{x} \, dx+\frac {1}{2} (5 \log (3)) \int e^{-2+x} x^2 \, dx+\frac {1}{2} (5 (3+\log (9))) \int e^{-2+x} x \, dx\\ &=\frac {15 e^{-2+x}}{2}-\frac {10 e^{-2+x}}{x}-\frac {10 \text {Ei}(x)}{e^2}+\frac {5}{2} e^{-2+x} x^2 \log (3)+\frac {5}{2} e^{-2+x} x (3+\log (9))+\frac {5 \log (x)}{x}+10 \int \frac {e^{-2+x}}{x} \, dx-(5 \log (3)) \int e^{-2+x} x \, dx-\frac {1}{2} (5 (3+\log (9))) \int e^{-2+x} \, dx\\ &=\frac {15 e^{-2+x}}{2}-\frac {10 e^{-2+x}}{x}-5 e^{-2+x} x \log (3)+\frac {5}{2} e^{-2+x} x^2 \log (3)-\frac {5}{2} e^{-2+x} (3+\log (9))+\frac {5}{2} e^{-2+x} x (3+\log (9))+\frac {5 \log (x)}{x}+(5 \log (3)) \int e^{-2+x} \, dx\\ &=\frac {15 e^{-2+x}}{2}-\frac {10 e^{-2+x}}{x}+5 e^{-2+x} \log (3)-5 e^{-2+x} x \log (3)+\frac {5}{2} e^{-2+x} x^2 \log (3)-\frac {5}{2} e^{-2+x} (3+\log (9))+\frac {5}{2} e^{-2+x} x (3+\log (9))+\frac {5 \log (x)}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 35, normalized size = 1.21 \begin {gather*} \frac {5 \left (e^x \left (-4+3 x^2+x^3 \log (3)\right )+2 e^2 \log (x)\right )}{2 e^2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 28, normalized size = 0.97 \begin {gather*} \frac {5 \, {\left ({\left (x^{3} \log \relax (3) + 3 \, x^{2} - 4\right )} e^{\left (x - 2\right )} + 2 \, \log \relax (x)\right )}}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 33, normalized size = 1.14 \begin {gather*} \frac {5 \, {\left (x^{3} e^{x} \log \relax (3) + 3 \, x^{2} e^{x} + 2 \, e^{2} \log \relax (x) - 4 \, e^{x}\right )} e^{\left (-2\right )}}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 31, normalized size = 1.07
method | result | size |
risch | \(\frac {5 \ln \relax (x )}{x}+\frac {5 \left (x^{3} \ln \relax (3)+3 x^{2}-4\right ) {\mathrm e}^{x -2}}{2 x}\) | \(31\) |
norman | \(\frac {\left (-10+\frac {15 x^{2}}{2}+\frac {5 x^{3} \ln \relax (3)}{2}+5 \,{\mathrm e}^{2-x} \ln \relax (x )\right ) {\mathrm e}^{x -2}}{x}\) | \(37\) |
default | \(\frac {5 \ln \relax (x )}{x}+\frac {5 \ln \relax (3) {\mathrm e}^{x -2} \left (2-x \right )^{2}}{2}-10 \ln \relax (3) {\mathrm e}^{x -2} \left (2-x \right )+10 \ln \relax (3) {\mathrm e}^{x -2}-\frac {10 \,{\mathrm e}^{x -2}}{x}+\frac {105 \,{\mathrm e}^{x -2}}{2}-\frac {15 \left (-x +7\right ) {\mathrm e}^{x -2}}{2}\) | \(71\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.51, size = 65, normalized size = 2.24 \begin {gather*} \frac {5}{2} \, {\left (x^{2} - 2 \, x + 2\right )} e^{\left (x - 2\right )} \log \relax (3) + 5 \, {\left (x - 1\right )} e^{\left (x - 2\right )} \log \relax (3) - 10 \, {\rm Ei}\relax (x) e^{\left (-2\right )} + \frac {15}{2} \, {\left (x - 1\right )} e^{\left (x - 2\right )} + 10 \, e^{\left (-2\right )} \Gamma \left (-1, -x\right ) + \frac {5 \, \log \relax (x)}{x} + \frac {15}{2} \, e^{\left (x - 2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.29, size = 35, normalized size = 1.21 \begin {gather*} \frac {15\,x\,{\mathrm {e}}^{x-2}}{2}-\frac {10\,{\mathrm {e}}^{x-2}-5\,\ln \relax (x)}{x}+\frac {5\,x^2\,{\mathrm {e}}^{x-2}\,\ln \relax (3)}{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 29, normalized size = 1.00 \begin {gather*} \frac {\left (5 x^{3} \log {\relax (3 )} + 15 x^{2} - 20\right ) e^{x - 2}}{2 x} + \frac {5 \log {\relax (x )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________