Optimal. Leaf size=24 \[ -e^{\frac {625}{(5-x)^2 x^3}}+\frac {e^x}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.37, antiderivative size = 24, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 77, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.039, Rules used = {6688, 6706, 2197} \begin {gather*} \frac {e^x}{x}-e^{\frac {625}{(5-x)^2 x^3}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2197
Rule 6688
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {3125 e^{\frac {625}{(-5+x)^2 x^3}} (-3+x)}{(-5+x)^3 x^4}+\frac {e^x (-1+x)}{x^2}\right ) \, dx\\ &=3125 \int \frac {e^{\frac {625}{(-5+x)^2 x^3}} (-3+x)}{(-5+x)^3 x^4} \, dx+\int \frac {e^x (-1+x)}{x^2} \, dx\\ &=-e^{\frac {625}{(5-x)^2 x^3}}+\frac {e^x}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 22, normalized size = 0.92 \begin {gather*} -e^{\frac {625}{(-5+x)^2 x^3}}+\frac {e^x}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.16, size = 31, normalized size = 1.29 \begin {gather*} -\frac {x e^{\left (\frac {625}{x^{5} - 10 \, x^{4} + 25 \, x^{3}}\right )} - e^{x}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 28, normalized size = 1.17 \begin {gather*} \frac {e^{x}}{x} - e^{\left (\frac {625}{x^{5} - 10 \, x^{4} + 25 \, x^{3}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 21, normalized size = 0.88
method | result | size |
risch | \(\frac {{\mathrm e}^{x}}{x}-{\mathrm e}^{\frac {625}{x^{3} \left (x -5\right )^{2}}}\) | \(21\) |
norman | \(\frac {{\mathrm e}^{x} x^{4}-25 x^{3} {\mathrm e}^{\frac {625}{x^{5}-10 x^{4}+25 x^{3}}}+10 x^{4} {\mathrm e}^{\frac {625}{x^{5}-10 x^{4}+25 x^{3}}}-x^{5} {\mathrm e}^{\frac {625}{x^{5}-10 x^{4}+25 x^{3}}}+25 \,{\mathrm e}^{x} x^{2}-10 \,{\mathrm e}^{x} x^{3}}{x^{3} \left (x -5\right )^{2}}\) | \(103\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.92, size = 57, normalized size = 2.38 \begin {gather*} -\frac {{\left (x e^{\left (\frac {5}{x^{2} - 10 \, x + 25} + \frac {3}{x} + \frac {10}{x^{2}} + \frac {25}{x^{3}}\right )} - e^{\left (x + \frac {3}{x - 5}\right )}\right )} e^{\left (-\frac {3}{x - 5}\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.32, size = 28, normalized size = 1.17 \begin {gather*} \frac {{\mathrm {e}}^x}{x}-{\mathrm {e}}^{\frac {625}{x^5-10\,x^4+25\,x^3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.32, size = 20, normalized size = 0.83 \begin {gather*} - e^{\frac {625}{x^{5} - 10 x^{4} + 25 x^{3}}} + \frac {e^{x}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________