Optimal. Leaf size=29 \[ \frac {x}{x+\frac {2 \left (-x^2+\log \left (-4+e^4-x+x^2\right )\right )}{x}} \]
________________________________________________________________________________________
Rubi [A] time = 0.42, antiderivative size = 25, normalized size of antiderivative = 0.86, number of steps used = 5, number of rules used = 5, integrand size = 135, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.037, Rules used = {6, 6688, 12, 6711, 32} \begin {gather*} \frac {2}{2-\frac {x^2}{\log \left (x^2-x+e^4-4\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 32
Rule 6688
Rule 6711
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x^2-4 x^3+\left (-16 x+4 e^4 x-4 x^2+4 x^3\right ) \log \left (-4+e^4-x+x^2\right )}{\left (-4+e^4\right ) x^4-x^5+x^6+\left (16 x^2-4 e^4 x^2+4 x^3-4 x^4\right ) \log \left (-4+e^4-x+x^2\right )+\left (-16+4 e^4-4 x+4 x^2\right ) \log ^2\left (-4+e^4-x+x^2\right )} \, dx\\ &=\int \frac {2 x \left (-x+2 x^2-2 \left (-4+e^4-x+x^2\right ) \log \left (-4+e^4-x+x^2\right )\right )}{\left (4-e^4+x-x^2\right ) \left (x^2-2 \log \left (-4+e^4-x+x^2\right )\right )^2} \, dx\\ &=2 \int \frac {x \left (-x+2 x^2-2 \left (-4+e^4-x+x^2\right ) \log \left (-4+e^4-x+x^2\right )\right )}{\left (4-e^4+x-x^2\right ) \left (x^2-2 \log \left (-4+e^4-x+x^2\right )\right )^2} \, dx\\ &=2 \operatorname {Subst}\left (\int \frac {1}{(-2+x)^2} \, dx,x,\frac {x^2}{\log \left (-4+e^4-x+x^2\right )}\right )\\ &=\frac {2}{2-\frac {x^2}{\log \left (-4+e^4-x+x^2\right )}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 3.49, size = 26, normalized size = 0.90 \begin {gather*} \frac {x^2}{-x^2+2 \log \left (-4+e^4-x+x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 24, normalized size = 0.83 \begin {gather*} -\frac {x^{2}}{x^{2} - 2 \, \log \left (x^{2} - x + e^{4} - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 24, normalized size = 0.83 \begin {gather*} -\frac {x^{2}}{x^{2} - 2 \, \log \left (x^{2} - x + e^{4} - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.21, size = 25, normalized size = 0.86
method | result | size |
risch | \(-\frac {x^{2}}{x^{2}-2 \ln \left ({\mathrm e}^{4}+x^{2}-x -4\right )}\) | \(25\) |
norman | \(-\frac {2 \ln \left ({\mathrm e}^{4}+x^{2}-x -4\right )}{x^{2}-2 \ln \left ({\mathrm e}^{4}+x^{2}-x -4\right )}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.61, size = 24, normalized size = 0.83 \begin {gather*} -\frac {x^{2}}{x^{2} - 2 \, \log \left (x^{2} - x + e^{4} - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 15.52, size = 25, normalized size = 0.86 \begin {gather*} \frac {x^2}{2\,\ln \left (x^2-x+{\mathrm {e}}^4-4\right )-x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.25, size = 19, normalized size = 0.66 \begin {gather*} \frac {x^{2}}{- x^{2} + 2 \log {\left (x^{2} - x - 4 + e^{4} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________