Optimal. Leaf size=32 \[ e^{\left (2-e^{e^{3+x}}-x+x^2\right )^2+\left (3-\frac {2}{\log (3)}\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 17.66, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \exp \left (\frac {4-12 \log (3)+e^{2 e^{3+x}} \log ^2(3)+e^{e^{3+x}} \left (-4+2 x-2 x^2\right ) \log ^2(3)+\left (13-4 x+5 x^2-2 x^3+x^4\right ) \log ^2(3)}{\log ^2(3)}\right ) \left (-4+2 e^{3+2 e^{3+x}+x}+10 x-6 x^2+4 x^3+e^{e^{3+x}} \left (2-4 x+e^{3+x} \left (-4+2 x-2 x^2\right )\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int 3^{-\frac {12}{\log ^2(3)}} \exp \left (\frac {4+e^{2 e^{3+x}} \log ^2(3)+e^{e^{3+x}} \left (-4+2 x-2 x^2\right ) \log ^2(3)+\left (13-4 x+5 x^2-2 x^3+x^4\right ) \log ^2(3)}{\log ^2(3)}\right ) \left (-4+2 e^{3+2 e^{3+x}+x}+10 x-6 x^2+4 x^3+e^{e^{3+x}} \left (2-4 x+e^{3+x} \left (-4+2 x-2 x^2\right )\right )\right ) \, dx\\ &=e^{-\frac {12}{\log (3)}} \int \exp \left (\frac {4+e^{2 e^{3+x}} \log ^2(3)+e^{e^{3+x}} \left (-4+2 x-2 x^2\right ) \log ^2(3)+\left (13-4 x+5 x^2-2 x^3+x^4\right ) \log ^2(3)}{\log ^2(3)}\right ) \left (-4+2 e^{3+2 e^{3+x}+x}+10 x-6 x^2+4 x^3+e^{e^{3+x}} \left (2-4 x+e^{3+x} \left (-4+2 x-2 x^2\right )\right )\right ) \, dx\\ &=e^{-\frac {12}{\log (3)}} \int 2 \exp \left (e^{2 e^{3+x}}-4 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+13 \left (1+\frac {4}{13 \log ^2(3)}\right )\right ) \left (1+e^{3+e^{3+x}+x}-2 x\right ) \left (-2+e^{e^{3+x}}+x-x^2\right ) \, dx\\ &=\left (2 e^{-\frac {12}{\log (3)}}\right ) \int \exp \left (e^{2 e^{3+x}}-4 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+13 \left (1+\frac {4}{13 \log ^2(3)}\right )\right ) \left (1+e^{3+e^{3+x}+x}-2 x\right ) \left (-2+e^{e^{3+x}}+x-x^2\right ) \, dx\\ &=\left (2 e^{-\frac {12}{\log (3)}}\right ) \int \left (\exp \left (3+e^{2 e^{3+x}}+e^{3+x}-3 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+13 \left (1+\frac {4}{13 \log ^2(3)}\right )\right ) \left (-2+e^{e^{3+x}}+x-x^2\right )+\exp \left (e^{2 e^{3+x}}-4 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+13 \left (1+\frac {4}{13 \log ^2(3)}\right )\right ) (-1+2 x) \left (2-e^{e^{3+x}}-x+x^2\right )\right ) \, dx\\ &=\left (2 e^{-\frac {12}{\log (3)}}\right ) \int \exp \left (3+e^{2 e^{3+x}}+e^{3+x}-3 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+13 \left (1+\frac {4}{13 \log ^2(3)}\right )\right ) \left (-2+e^{e^{3+x}}+x-x^2\right ) \, dx+\left (2 e^{-\frac {12}{\log (3)}}\right ) \int \exp \left (e^{2 e^{3+x}}-4 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+13 \left (1+\frac {4}{13 \log ^2(3)}\right )\right ) (-1+2 x) \left (2-e^{e^{3+x}}-x+x^2\right ) \, dx\\ &=\left (2 e^{-\frac {12}{\log (3)}}\right ) \int \exp \left (e^{2 e^{3+x}}+e^{3+x}-3 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+3 \left (\frac {16}{3}+\frac {4}{3 \log ^2(3)}\right )\right ) \left (-2+e^{e^{3+x}}+x-x^2\right ) \, dx+\left (2 e^{-\frac {12}{\log (3)}}\right ) \int \left (-2 \exp \left (e^{2 e^{3+x}}-4 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+13 \left (1+\frac {4}{13 \log ^2(3)}\right )\right )+5 \exp \left (e^{2 e^{3+x}}-4 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+13 \left (1+\frac {4}{13 \log ^2(3)}\right )\right ) x-3 \exp \left (e^{2 e^{3+x}}-4 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+13 \left (1+\frac {4}{13 \log ^2(3)}\right )\right ) x^2+2 \exp \left (e^{2 e^{3+x}}-4 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+13 \left (1+\frac {4}{13 \log ^2(3)}\right )\right ) x^3-\exp \left (e^{2 e^{3+x}}+e^{3+x}-4 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+13 \left (1+\frac {4}{13 \log ^2(3)}\right )\right ) (-1+2 x)\right ) \, dx\\ &=-\left (\left (2 e^{-\frac {12}{\log (3)}}\right ) \int \exp \left (e^{2 e^{3+x}}+e^{3+x}-4 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+13 \left (1+\frac {4}{13 \log ^2(3)}\right )\right ) (-1+2 x) \, dx\right )+\left (2 e^{-\frac {12}{\log (3)}}\right ) \int \left (-2 \exp \left (e^{2 e^{3+x}}+e^{3+x}-3 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+3 \left (\frac {16}{3}+\frac {4}{3 \log ^2(3)}\right )\right )+\exp \left (e^{2 e^{3+x}}+2 e^{3+x}-3 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+3 \left (\frac {16}{3}+\frac {4}{3 \log ^2(3)}\right )\right )+\exp \left (e^{2 e^{3+x}}+e^{3+x}-3 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+3 \left (\frac {16}{3}+\frac {4}{3 \log ^2(3)}\right )\right ) x-\exp \left (e^{2 e^{3+x}}+e^{3+x}-3 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+3 \left (\frac {16}{3}+\frac {4}{3 \log ^2(3)}\right )\right ) x^2\right ) \, dx-\left (4 e^{-\frac {12}{\log (3)}}\right ) \int \exp \left (e^{2 e^{3+x}}-4 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+13 \left (1+\frac {4}{13 \log ^2(3)}\right )\right ) \, dx+\left (4 e^{-\frac {12}{\log (3)}}\right ) \int \exp \left (e^{2 e^{3+x}}-4 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+13 \left (1+\frac {4}{13 \log ^2(3)}\right )\right ) x^3 \, dx-\left (6 e^{-\frac {12}{\log (3)}}\right ) \int \exp \left (e^{2 e^{3+x}}-4 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+13 \left (1+\frac {4}{13 \log ^2(3)}\right )\right ) x^2 \, dx+\left (10 e^{-\frac {12}{\log (3)}}\right ) \int \exp \left (e^{2 e^{3+x}}-4 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+13 \left (1+\frac {4}{13 \log ^2(3)}\right )\right ) x \, dx\\ &=\left (2 e^{-\frac {12}{\log (3)}}\right ) \int \exp \left (e^{2 e^{3+x}}+2 e^{3+x}-3 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+3 \left (\frac {16}{3}+\frac {4}{3 \log ^2(3)}\right )\right ) \, dx+\left (2 e^{-\frac {12}{\log (3)}}\right ) \int \exp \left (e^{2 e^{3+x}}+e^{3+x}-3 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+3 \left (\frac {16}{3}+\frac {4}{3 \log ^2(3)}\right )\right ) x \, dx-\left (2 e^{-\frac {12}{\log (3)}}\right ) \int \exp \left (e^{2 e^{3+x}}+e^{3+x}-3 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+3 \left (\frac {16}{3}+\frac {4}{3 \log ^2(3)}\right )\right ) x^2 \, dx-\left (2 e^{-\frac {12}{\log (3)}}\right ) \int \left (-\exp \left (e^{2 e^{3+x}}+e^{3+x}-4 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+13 \left (1+\frac {4}{13 \log ^2(3)}\right )\right )+2 \exp \left (e^{2 e^{3+x}}+e^{3+x}-4 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+13 \left (1+\frac {4}{13 \log ^2(3)}\right )\right ) x\right ) \, dx-\left (4 e^{-\frac {12}{\log (3)}}\right ) \int \exp \left (e^{2 e^{3+x}}-4 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+13 \left (1+\frac {4}{13 \log ^2(3)}\right )\right ) \, dx-\left (4 e^{-\frac {12}{\log (3)}}\right ) \int \exp \left (e^{2 e^{3+x}}+e^{3+x}-3 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+3 \left (\frac {16}{3}+\frac {4}{3 \log ^2(3)}\right )\right ) \, dx+\left (4 e^{-\frac {12}{\log (3)}}\right ) \int \exp \left (e^{2 e^{3+x}}-4 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+13 \left (1+\frac {4}{13 \log ^2(3)}\right )\right ) x^3 \, dx-\left (6 e^{-\frac {12}{\log (3)}}\right ) \int \exp \left (e^{2 e^{3+x}}-4 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+13 \left (1+\frac {4}{13 \log ^2(3)}\right )\right ) x^2 \, dx+\left (10 e^{-\frac {12}{\log (3)}}\right ) \int \exp \left (e^{2 e^{3+x}}-4 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+13 \left (1+\frac {4}{13 \log ^2(3)}\right )\right ) x \, dx\\ &=\left (2 e^{-\frac {12}{\log (3)}}\right ) \int \exp \left (e^{2 e^{3+x}}+e^{3+x}-4 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+13 \left (1+\frac {4}{13 \log ^2(3)}\right )\right ) \, dx+\left (2 e^{-\frac {12}{\log (3)}}\right ) \int \exp \left (e^{2 e^{3+x}}+2 e^{3+x}-3 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+3 \left (\frac {16}{3}+\frac {4}{3 \log ^2(3)}\right )\right ) \, dx+\left (2 e^{-\frac {12}{\log (3)}}\right ) \int \exp \left (e^{2 e^{3+x}}+e^{3+x}-3 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+3 \left (\frac {16}{3}+\frac {4}{3 \log ^2(3)}\right )\right ) x \, dx-\left (2 e^{-\frac {12}{\log (3)}}\right ) \int \exp \left (e^{2 e^{3+x}}+e^{3+x}-3 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+3 \left (\frac {16}{3}+\frac {4}{3 \log ^2(3)}\right )\right ) x^2 \, dx-\left (4 e^{-\frac {12}{\log (3)}}\right ) \int \exp \left (e^{2 e^{3+x}}-4 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+13 \left (1+\frac {4}{13 \log ^2(3)}\right )\right ) \, dx-\left (4 e^{-\frac {12}{\log (3)}}\right ) \int \exp \left (e^{2 e^{3+x}}+e^{3+x}-3 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+3 \left (\frac {16}{3}+\frac {4}{3 \log ^2(3)}\right )\right ) \, dx-\left (4 e^{-\frac {12}{\log (3)}}\right ) \int \exp \left (e^{2 e^{3+x}}+e^{3+x}-4 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+13 \left (1+\frac {4}{13 \log ^2(3)}\right )\right ) x \, dx+\left (4 e^{-\frac {12}{\log (3)}}\right ) \int \exp \left (e^{2 e^{3+x}}-4 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+13 \left (1+\frac {4}{13 \log ^2(3)}\right )\right ) x^3 \, dx-\left (6 e^{-\frac {12}{\log (3)}}\right ) \int \exp \left (e^{2 e^{3+x}}-4 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+13 \left (1+\frac {4}{13 \log ^2(3)}\right )\right ) x^2 \, dx+\left (10 e^{-\frac {12}{\log (3)}}\right ) \int \exp \left (e^{2 e^{3+x}}-4 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )+13 \left (1+\frac {4}{13 \log ^2(3)}\right )\right ) x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.21, size = 58, normalized size = 1.81 \begin {gather*} e^{13+e^{2 e^{3+x}}-4 x+5 x^2-2 x^3+x^4-2 e^{e^{3+x}} \left (2-x+x^2\right )-\frac {4 (-1+3 \log (3))}{\log ^2(3)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.25, size = 69, normalized size = 2.16 \begin {gather*} e^{\left (-\frac {2 \, {\left (x^{2} - x + 2\right )} e^{\left (e^{\left (x + 3\right )}\right )} \log \relax (3)^{2} - {\left (x^{4} - 2 \, x^{3} + 5 \, x^{2} - 4 \, x + 13\right )} \log \relax (3)^{2} - e^{\left (2 \, e^{\left (x + 3\right )}\right )} \log \relax (3)^{2} + 12 \, \log \relax (3) - 4}{\log \relax (3)^{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int 2 \, {\left (2 \, x^{3} - 3 \, x^{2} - {\left ({\left (x^{2} - x + 2\right )} e^{\left (x + 3\right )} + 2 \, x - 1\right )} e^{\left (e^{\left (x + 3\right )}\right )} + 5 \, x + e^{\left (x + 2 \, e^{\left (x + 3\right )} + 3\right )} - 2\right )} e^{\left (-\frac {2 \, {\left (x^{2} - x + 2\right )} e^{\left (e^{\left (x + 3\right )}\right )} \log \relax (3)^{2} - {\left (x^{4} - 2 \, x^{3} + 5 \, x^{2} - 4 \, x + 13\right )} \log \relax (3)^{2} - e^{\left (2 \, e^{\left (x + 3\right )}\right )} \log \relax (3)^{2} + 12 \, \log \relax (3) - 4}{\log \relax (3)^{2}}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.13, size = 101, normalized size = 3.16
method | result | size |
risch | \({\mathrm e}^{\frac {x^{4} \ln \relax (3)^{2}-2 \ln \relax (3)^{2} {\mathrm e}^{{\mathrm e}^{3+x}} x^{2}-2 x^{3} \ln \relax (3)^{2}+2 \ln \relax (3)^{2} {\mathrm e}^{{\mathrm e}^{3+x}} x +5 x^{2} \ln \relax (3)^{2}-4 \ln \relax (3)^{2} {\mathrm e}^{{\mathrm e}^{3+x}}+\ln \relax (3)^{2} {\mathrm e}^{2 \,{\mathrm e}^{3+x}}-4 x \ln \relax (3)^{2}+13 \ln \relax (3)^{2}-12 \ln \relax (3)+4}{\ln \relax (3)^{2}}}\) | \(101\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.30, size = 63, normalized size = 1.97 \begin {gather*} e^{\left (x^{4} - 2 \, x^{3} - 2 \, x^{2} e^{\left (e^{\left (x + 3\right )}\right )} + 5 \, x^{2} + 2 \, x e^{\left (e^{\left (x + 3\right )}\right )} - 4 \, x - \frac {12}{\log \relax (3)} + \frac {4}{\log \relax (3)^{2}} + e^{\left (2 \, e^{\left (x + 3\right )}\right )} - 4 \, e^{\left (e^{\left (x + 3\right )}\right )} + 13\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.35, size = 76, normalized size = 2.38 \begin {gather*} {\mathrm {e}}^{-4\,x}\,{\mathrm {e}}^{x^4}\,{\mathrm {e}}^{2\,x\,{\mathrm {e}}^{{\mathrm {e}}^3\,{\mathrm {e}}^x}}\,{\mathrm {e}}^{13}\,{\mathrm {e}}^{{\mathrm {e}}^{2\,{\mathrm {e}}^3\,{\mathrm {e}}^x}}\,{\mathrm {e}}^{\frac {4}{{\ln \relax (3)}^2}}\,{\mathrm {e}}^{-\frac {12}{\ln \relax (3)}}\,{\mathrm {e}}^{-2\,x^3}\,{\mathrm {e}}^{5\,x^2}\,{\mathrm {e}}^{-2\,x^2\,{\mathrm {e}}^{{\mathrm {e}}^3\,{\mathrm {e}}^x}}\,{\mathrm {e}}^{-4\,{\mathrm {e}}^{{\mathrm {e}}^3\,{\mathrm {e}}^x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.55, size = 71, normalized size = 2.22 \begin {gather*} e^{\frac {\left (- 2 x^{2} + 2 x - 4\right ) e^{e^{x + 3}} \log {\relax (3 )}^{2} + \left (x^{4} - 2 x^{3} + 5 x^{2} - 4 x + 13\right ) \log {\relax (3 )}^{2} + e^{2 e^{x + 3}} \log {\relax (3 )}^{2} - 12 \log {\relax (3 )} + 4}{\log {\relax (3 )}^{2}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________