Optimal. Leaf size=28 \[ -1+\frac {5 e^{-2+x-\frac {x^2}{2+3 e^x}}}{2 x} \]
________________________________________________________________________________________
Rubi [F] time = 9.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{\frac {-4+3 e^x (-2+x)+2 x-x^2}{2+3 e^x}} \left (-20+20 x-20 x^2+9 e^{2 x} (-5+5 x)+3 e^x \left (-20+20 x-10 x^2+5 x^3\right )\right )}{8 x^2+24 e^x x^2+18 e^{2 x} x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {-4+3 e^x (-2+x)+2 x-x^2}{2+3 e^x}} \left (-20+20 x-20 x^2+9 e^{2 x} (-5+5 x)+3 e^x \left (-20+20 x-10 x^2+5 x^3\right )\right )}{2 \left (2+3 e^x\right )^2 x^2} \, dx\\ &=\frac {1}{2} \int \frac {e^{\frac {-4+3 e^x (-2+x)+2 x-x^2}{2+3 e^x}} \left (-20+20 x-20 x^2+9 e^{2 x} (-5+5 x)+3 e^x \left (-20+20 x-10 x^2+5 x^3\right )\right )}{\left (2+3 e^x\right )^2 x^2} \, dx\\ &=\frac {1}{2} \int \left (\frac {5 e^{\frac {-4+3 e^x (-2+x)+2 x-x^2}{2+3 e^x}} (-2+x)}{2+3 e^x}+\frac {5 e^{\frac {-4+3 e^x (-2+x)+2 x-x^2}{2+3 e^x}} (-1+x)}{x^2}-\frac {10 e^{\frac {-4+3 e^x (-2+x)+2 x-x^2}{2+3 e^x}} x}{\left (2+3 e^x\right )^2}\right ) \, dx\\ &=\frac {5}{2} \int \frac {e^{\frac {-4+3 e^x (-2+x)+2 x-x^2}{2+3 e^x}} (-2+x)}{2+3 e^x} \, dx+\frac {5}{2} \int \frac {e^{\frac {-4+3 e^x (-2+x)+2 x-x^2}{2+3 e^x}} (-1+x)}{x^2} \, dx-5 \int \frac {e^{\frac {-4+3 e^x (-2+x)+2 x-x^2}{2+3 e^x}} x}{\left (2+3 e^x\right )^2} \, dx\\ &=\frac {5}{2} \int \left (-\frac {e^{\frac {-4+3 e^x (-2+x)+2 x-x^2}{2+3 e^x}}}{x^2}+\frac {e^{\frac {-4+3 e^x (-2+x)+2 x-x^2}{2+3 e^x}}}{x}\right ) \, dx+\frac {5}{2} \int \left (-\frac {2 e^{\frac {-4+3 e^x (-2+x)+2 x-x^2}{2+3 e^x}}}{2+3 e^x}+\frac {e^{\frac {-4+3 e^x (-2+x)+2 x-x^2}{2+3 e^x}} x}{2+3 e^x}\right ) \, dx-5 \int \frac {e^{\frac {-4+3 e^x (-2+x)+2 x-x^2}{2+3 e^x}} x}{\left (2+3 e^x\right )^2} \, dx\\ &=-\left (\frac {5}{2} \int \frac {e^{\frac {-4+3 e^x (-2+x)+2 x-x^2}{2+3 e^x}}}{x^2} \, dx\right )+\frac {5}{2} \int \frac {e^{\frac {-4+3 e^x (-2+x)+2 x-x^2}{2+3 e^x}}}{x} \, dx+\frac {5}{2} \int \frac {e^{\frac {-4+3 e^x (-2+x)+2 x-x^2}{2+3 e^x}} x}{2+3 e^x} \, dx-5 \int \frac {e^{\frac {-4+3 e^x (-2+x)+2 x-x^2}{2+3 e^x}}}{2+3 e^x} \, dx-5 \int \frac {e^{\frac {-4+3 e^x (-2+x)+2 x-x^2}{2+3 e^x}} x}{\left (2+3 e^x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 26, normalized size = 0.93 \begin {gather*} \frac {5 e^{-2+x-\frac {x^2}{2+3 e^x}}}{2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.74, size = 35, normalized size = 1.25 \begin {gather*} \frac {5 \, e^{\left (-\frac {x^{2} - {\left (x - 2\right )} e^{\left (x + \log \relax (3)\right )} - 2 \, x + 4}{e^{\left (x + \log \relax (3)\right )} + 2}\right )}}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.65, size = 30, normalized size = 1.07 \begin {gather*} \frac {5 \, e^{\left (-\frac {x^{2} - 3 \, x e^{x} - 2 \, x}{3 \, e^{x} + 2} - 2\right )}}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.18, size = 84, normalized size = 3.00
method | result | size |
norman | \(\frac {\frac {5 \,{\mathrm e}^{\ln \relax (3)+x} {\mathrm e}^{\frac {\left (x -2\right ) {\mathrm e}^{\ln \relax (3)+x}-x^{2}+2 x -4}{{\mathrm e}^{\ln \relax (3)+x}+2}}}{2}+5 \,{\mathrm e}^{\frac {\left (x -2\right ) {\mathrm e}^{\ln \relax (3)+x}-x^{2}+2 x -4}{{\mathrm e}^{\ln \relax (3)+x}+2}}}{x \left ({\mathrm e}^{\ln \relax (3)+x}+2\right )}\) | \(84\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.81, size = 66, normalized size = 2.36 \begin {gather*} \frac {5 \, e^{\left (-\frac {x^{2}}{3 \, e^{x} + 2} + \frac {3 \, x e^{x}}{3 \, e^{x} + 2} + \frac {2 \, x}{3 \, e^{x} + 2} - \frac {6 \, e^{x}}{3 \, e^{x} + 2} - \frac {4}{3 \, e^{x} + 2}\right )}}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.30, size = 69, normalized size = 2.46 \begin {gather*} \frac {5\,{\mathrm {e}}^{\frac {3\,x\,{\mathrm {e}}^x}{3\,{\mathrm {e}}^x+2}}\,{\mathrm {e}}^{\frac {2\,x}{3\,{\mathrm {e}}^x+2}}\,{\mathrm {e}}^{-\frac {x^2}{3\,{\mathrm {e}}^x+2}}\,{\mathrm {e}}^{-\frac {6\,{\mathrm {e}}^x}{3\,{\mathrm {e}}^x+2}}\,{\mathrm {e}}^{-\frac {4}{3\,{\mathrm {e}}^x+2}}}{2\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.37, size = 29, normalized size = 1.04 \begin {gather*} \frac {5 e^{\frac {- x^{2} + 2 x + 3 \left (x - 2\right ) e^{x} - 4}{3 e^{x} + 2}}}{2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________