Optimal. Leaf size=28 \[ (2+\log (4)) \left (5+\log \left (2 \log (2)-\log ^2(\log (2-2 (3-x)))\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.16, antiderivative size = 22, normalized size of antiderivative = 0.79, number of steps used = 5, number of rules used = 3, integrand size = 50, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.060, Rules used = {12, 207, 260} \begin {gather*} (2+\log (4)) \log \left (\log (4)-\log ^2(\log (-2 (2-x)))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 207
Rule 260
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=(4+2 \log (4)) \int \frac {\log (\log (-4+2 x))}{(4-2 x) \log (2) \log (-4+2 x)+(-2+x) \log (-4+2 x) \log ^2(\log (-4+2 x))} \, dx\\ &=(4+2 \log (4)) \operatorname {Subst}\left (\int \frac {\log (\log (2 x))}{-2 x \log (2) \log (2 x)+x \log (2 x) \log ^2(\log (2 x))} \, dx,x,-2+x\right )\\ &=(4+2 \log (4)) \operatorname {Subst}\left (\int \frac {\log (x)}{x \left (-2 \log (2)+\log ^2(x)\right )} \, dx,x,\log (2 (-2+x))\right )\\ &=(4+2 \log (4)) \operatorname {Subst}\left (\int \frac {x}{x^2-2 \log (2)} \, dx,x,\log (\log (2 (-2+x)))\right )\\ &=(2+\log (4)) \log \left (\log (4)-\log ^2(\log (-2 (2-x)))\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 20, normalized size = 0.71 \begin {gather*} (2+\log (4)) \log \left (\log (4)-\log ^2(\log (2 (-2+x)))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 21, normalized size = 0.75 \begin {gather*} 2 \, {\left (\log \relax (2) + 1\right )} \log \left (\log \left (\log \left (2 \, x - 4\right )\right )^{2} - 2 \, \log \relax (2)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {4 \, {\left (\log \relax (2) + 1\right )} \log \left (\log \left (2 \, x - 4\right )\right )}{{\left (x - 2\right )} \log \left (2 \, x - 4\right ) \log \left (\log \left (2 \, x - 4\right )\right )^{2} - 2 \, {\left (x - 2\right )} \log \relax (2) \log \left (2 \, x - 4\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.17, size = 25, normalized size = 0.89
method | result | size |
norman | \(\left (2+2 \ln \relax (2)\right ) \ln \left (2 \ln \relax (2)-\ln \left (\ln \left (2 x -4\right )\right )^{2}\right )\) | \(25\) |
risch | \(2 \ln \left (\ln \left (\ln \left (2 x -4\right )\right )^{2}-2 \ln \relax (2)\right ) \ln \relax (2)+2 \ln \left (\ln \left (\ln \left (2 x -4\right )\right )^{2}-2 \ln \relax (2)\right )\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.68, size = 22, normalized size = 0.79 \begin {gather*} 2 \, {\left (\log \relax (2) + 1\right )} \log \left (\log \left (\log \relax (2) + \log \left (x - 2\right )\right )^{2} - 2 \, \log \relax (2)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.60, size = 20, normalized size = 0.71 \begin {gather*} \ln \left ({\ln \left (\ln \left (2\,x-4\right )\right )}^2-\ln \relax (4)\right )\,\left (\ln \relax (4)+2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.39, size = 22, normalized size = 0.79 \begin {gather*} 2 \left (\log {\relax (2 )} + 1\right ) \log {\left (\log {\left (\log {\left (2 x - 4 \right )} \right )}^{2} - 2 \log {\relax (2 )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________