Optimal. Leaf size=20 \[ \frac {16 e^{1+x+x^4} \left (1+\frac {3}{x}\right )}{x^2} \]
________________________________________________________________________________________
Rubi [F] time = 0.42, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{1+x+x^4} \left (-144+16 x+16 x^2+192 x^4+64 x^5\right )}{x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {16 e^{1+x+x^4} \left (-9+x+x^2+12 x^4+4 x^5\right )}{x^4} \, dx\\ &=16 \int \frac {e^{1+x+x^4} \left (-9+x+x^2+12 x^4+4 x^5\right )}{x^4} \, dx\\ &=16 \int \left (12 e^{1+x+x^4}-\frac {9 e^{1+x+x^4}}{x^4}+\frac {e^{1+x+x^4}}{x^3}+\frac {e^{1+x+x^4}}{x^2}+4 e^{1+x+x^4} x\right ) \, dx\\ &=16 \int \frac {e^{1+x+x^4}}{x^3} \, dx+16 \int \frac {e^{1+x+x^4}}{x^2} \, dx+64 \int e^{1+x+x^4} x \, dx-144 \int \frac {e^{1+x+x^4}}{x^4} \, dx+192 \int e^{1+x+x^4} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 16, normalized size = 0.80 \begin {gather*} \frac {16 e^{1+x+x^4} (3+x)}{x^3} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 15, normalized size = 0.75 \begin {gather*} \frac {16 \, {\left (x + 3\right )} e^{\left (x^{4} + x + 1\right )}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 24, normalized size = 1.20 \begin {gather*} \frac {16 \, {\left (x e^{\left (x^{4} + x + 1\right )} + 3 \, e^{\left (x^{4} + x + 1\right )}\right )}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 16, normalized size = 0.80
method | result | size |
gosper | \(\frac {16 \,{\mathrm e}^{x^{4}+x +1} \left (3+x \right )}{x^{3}}\) | \(16\) |
risch | \(\frac {16 \,{\mathrm e}^{x^{4}+x +1} \left (3+x \right )}{x^{3}}\) | \(16\) |
norman | \(\frac {48 \,{\mathrm e} \,{\mathrm e}^{x^{4}+x}+16 x \,{\mathrm e} \,{\mathrm e}^{x^{4}+x}}{x^{3}}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 20, normalized size = 1.00 \begin {gather*} \frac {16 \, {\left (x e + 3 \, e\right )} e^{\left (x^{4} + x\right )}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 15, normalized size = 0.75 \begin {gather*} \frac {16\,{\mathrm {e}}^{x^4+x+1}\,\left (x+3\right )}{x^3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 20, normalized size = 1.00 \begin {gather*} \frac {\left (16 e x + 48 e\right ) e^{x^{4} + x}}{x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________