Optimal. Leaf size=26 \[ \left (-22+\frac {\log (3)}{x}-\frac {1}{5} \log \left (\left (5-3 e^4\right )^2+x\right )\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 1.21, antiderivative size = 121, normalized size of antiderivative = 4.65, number of steps used = 17, number of rules used = 13, integrand size = 125, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.104, Rules used = {6, 1593, 6688, 12, 6742, 1612, 2418, 2390, 2301, 2395, 36, 29, 31} \begin {gather*} \frac {\log ^2(3)}{x^2}+\frac {1}{25} \log ^2\left (x+\left (5-3 e^4\right )^2\right )+\frac {2 \left (550-660 e^4+198 e^8+\log (3)\right ) \log \left (x+\left (5-3 e^4\right )^2\right )}{5 \left (5-3 e^4\right )^2}-\frac {2 \log (3) \log \left (x+\left (5-3 e^4\right )^2\right )}{5 x}-\frac {2 \log (3) \log \left (x+\left (5-3 e^4\right )^2\right )}{5 \left (5-3 e^4\right )^2}-\frac {44 \log (3)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 29
Rule 31
Rule 36
Rule 1593
Rule 1612
Rule 2301
Rule 2390
Rule 2395
Rule 2418
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {220 x^3+\left (27500 x-33000 e^4 x+9900 e^8 x+1090 x^2\right ) \log (3)+\left (-1250+1500 e^4-450 e^8-50 x\right ) \log ^2(3)+\left (2 x^3+\left (250 x-300 e^4 x+90 e^8 x+10 x^2\right ) \log (3)\right ) \log \left (25-30 e^4+9 e^8+x\right )}{225 e^8 x^3+\left (625-750 e^4\right ) x^3+25 x^4} \, dx\\ &=\int \frac {220 x^3+\left (27500 x-33000 e^4 x+9900 e^8 x+1090 x^2\right ) \log (3)+\left (-1250+1500 e^4-450 e^8-50 x\right ) \log ^2(3)+\left (2 x^3+\left (250 x-300 e^4 x+90 e^8 x+10 x^2\right ) \log (3)\right ) \log \left (25-30 e^4+9 e^8+x\right )}{\left (625-750 e^4+225 e^8\right ) x^3+25 x^4} \, dx\\ &=\int \frac {220 x^3+\left (27500 x-33000 e^4 x+9900 e^8 x+1090 x^2\right ) \log (3)+\left (-1250+1500 e^4-450 e^8-50 x\right ) \log ^2(3)+\left (2 x^3+\left (250 x-300 e^4 x+90 e^8 x+10 x^2\right ) \log (3)\right ) \log \left (25-30 e^4+9 e^8+x\right )}{x^3 \left (625-750 e^4+225 e^8+25 x\right )} \, dx\\ &=\int \frac {2 \left (x^2+5 \left (5-3 e^4\right )^2 \log (3)+5 x \log (3)\right ) \left (110 x-5 \log (3)+x \log \left (25-30 e^4+9 e^8+x\right )\right )}{25 x^3 \left (25-30 e^4+9 e^8+x\right )} \, dx\\ &=\frac {2}{25} \int \frac {\left (x^2+5 \left (5-3 e^4\right )^2 \log (3)+5 x \log (3)\right ) \left (110 x-5 \log (3)+x \log \left (25-30 e^4+9 e^8+x\right )\right )}{x^3 \left (25-30 e^4+9 e^8+x\right )} \, dx\\ &=\frac {2}{25} \int \left (\frac {5 (22 x-\log (3)) \left (x^2+5 \left (5-3 e^4\right )^2 \log (3)+5 x \log (3)\right )}{x^3 \left (25-30 e^4+9 e^8+x\right )}+\frac {\left (x^2+5 \left (5-3 e^4\right )^2 \log (3)+5 x \log (3)\right ) \log \left (25-30 e^4+9 e^8+x\right )}{x^2 \left (25-30 e^4+9 e^8+x\right )}\right ) \, dx\\ &=\frac {2}{25} \int \frac {\left (x^2+5 \left (5-3 e^4\right )^2 \log (3)+5 x \log (3)\right ) \log \left (25-30 e^4+9 e^8+x\right )}{x^2 \left (25-30 e^4+9 e^8+x\right )} \, dx+\frac {2}{5} \int \frac {(22 x-\log (3)) \left (x^2+5 \left (5-3 e^4\right )^2 \log (3)+5 x \log (3)\right )}{x^3 \left (25-30 e^4+9 e^8+x\right )} \, dx\\ &=\frac {2}{25} \int \left (\frac {\log \left (25-30 e^4+9 e^8+x\right )}{25-30 e^4+9 e^8+x}+\frac {5 \log (3) \log \left (25-30 e^4+9 e^8+x\right )}{x^2}\right ) \, dx+\frac {2}{5} \int \left (\frac {110 \log (3)}{x^2}-\frac {\log (3)}{\left (-5+3 e^4\right )^2 x}-\frac {5 \log ^2(3)}{x^3}+\frac {550-660 e^4+198 e^8+\log (3)}{\left (-5+3 e^4\right )^2 \left (25-30 e^4+9 e^8+x\right )}\right ) \, dx\\ &=-\frac {44 \log (3)}{x}+\frac {\log ^2(3)}{x^2}-\frac {2 \log (3) \log (x)}{5 \left (5-3 e^4\right )^2}+\frac {2 \left (550-660 e^4+198 e^8+\log (3)\right ) \log \left (\left (5-3 e^4\right )^2+x\right )}{5 \left (5-3 e^4\right )^2}+\frac {2}{25} \int \frac {\log \left (25-30 e^4+9 e^8+x\right )}{25-30 e^4+9 e^8+x} \, dx+\frac {1}{5} (2 \log (3)) \int \frac {\log \left (25-30 e^4+9 e^8+x\right )}{x^2} \, dx\\ &=-\frac {44 \log (3)}{x}+\frac {\log ^2(3)}{x^2}-\frac {2 \log (3) \log (x)}{5 \left (5-3 e^4\right )^2}-\frac {2 \log (3) \log \left (\left (5-3 e^4\right )^2+x\right )}{5 x}+\frac {2 \left (550-660 e^4+198 e^8+\log (3)\right ) \log \left (\left (5-3 e^4\right )^2+x\right )}{5 \left (5-3 e^4\right )^2}+\frac {2}{25} \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,25-30 e^4+9 e^8+x\right )+\frac {1}{5} (2 \log (3)) \int \frac {1}{x \left (25-30 e^4+9 e^8+x\right )} \, dx\\ &=-\frac {44 \log (3)}{x}+\frac {\log ^2(3)}{x^2}-\frac {2 \log (3) \log (x)}{5 \left (5-3 e^4\right )^2}-\frac {2 \log (3) \log \left (\left (5-3 e^4\right )^2+x\right )}{5 x}+\frac {2 \left (550-660 e^4+198 e^8+\log (3)\right ) \log \left (\left (5-3 e^4\right )^2+x\right )}{5 \left (5-3 e^4\right )^2}+\frac {1}{25} \log ^2\left (\left (5-3 e^4\right )^2+x\right )+\frac {(2 \log (3)) \int \frac {1}{x} \, dx}{5 \left (5-3 e^4\right )^2}-\frac {(2 \log (3)) \int \frac {1}{25-30 e^4+9 e^8+x} \, dx}{5 \left (5-3 e^4\right )^2}\\ &=-\frac {44 \log (3)}{x}+\frac {\log ^2(3)}{x^2}-\frac {2 \log (3) \log \left (\left (5-3 e^4\right )^2+x\right )}{5 \left (5-3 e^4\right )^2}-\frac {2 \log (3) \log \left (\left (5-3 e^4\right )^2+x\right )}{5 x}+\frac {2 \left (550-660 e^4+198 e^8+\log (3)\right ) \log \left (\left (5-3 e^4\right )^2+x\right )}{5 \left (5-3 e^4\right )^2}+\frac {1}{25} \log ^2\left (\left (5-3 e^4\right )^2+x\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.20, size = 116, normalized size = 4.46 \begin {gather*} \frac {2}{25} \left (\frac {25 \log ^2(3)}{2 x^2}-\frac {5 \log (3) \log \left (\left (5-3 e^4\right )^2+x\right )}{\left (5-3 e^4\right )^2}-\frac {5 \log (3) \left (110+\log \left (\left (5-3 e^4\right )^2+x\right )\right )}{x}+\frac {\left (5 \left (550-660 e^4+198 e^8+\log (3)\right )+\left (5-3 e^4\right )^2 \log \left (\left (5-3 e^4\right )^2+x\right )\right )^2}{2 \left (5-3 e^4\right )^4}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.58, size = 60, normalized size = 2.31 \begin {gather*} \frac {x^{2} \log \left (x + 9 \, e^{8} - 30 \, e^{4} + 25\right )^{2} - 1100 \, x \log \relax (3) + 25 \, \log \relax (3)^{2} + 10 \, {\left (22 \, x^{2} - x \log \relax (3)\right )} \log \left (x + 9 \, e^{8} - 30 \, e^{4} + 25\right )}{25 \, x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {2 \, {\left (110 \, x^{3} - 25 \, {\left (x + 9 \, e^{8} - 30 \, e^{4} + 25\right )} \log \relax (3)^{2} + 5 \, {\left (109 \, x^{2} + 990 \, x e^{8} - 3300 \, x e^{4} + 2750 \, x\right )} \log \relax (3) + {\left (x^{3} + 5 \, {\left (x^{2} + 9 \, x e^{8} - 30 \, x e^{4} + 25 \, x\right )} \log \relax (3)\right )} \log \left (x + 9 \, e^{8} - 30 \, e^{4} + 25\right )\right )}}{25 \, {\left (x^{4} + 9 \, x^{3} e^{8} - 30 \, x^{3} e^{4} + 25 \, x^{3}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.18, size = 71, normalized size = 2.73
method | result | size |
risch | \(\frac {\ln \left (9 \,{\mathrm e}^{8}-30 \,{\mathrm e}^{4}+x +25\right )^{2}}{25}-\frac {2 \ln \relax (3) \ln \left (9 \,{\mathrm e}^{8}-30 \,{\mathrm e}^{4}+x +25\right )}{5 x}+\frac {44 x^{2} \ln \left (9 \,{\mathrm e}^{8}-30 \,{\mathrm e}^{4}+x +25\right )+5 \ln \relax (3)^{2}-220 x \ln \relax (3)}{5 x^{2}}\) | \(71\) |
norman | \(\frac {\ln \relax (3)^{2}+\frac {44 x^{2} \ln \left (9 \,{\mathrm e}^{8}-30 \,{\mathrm e}^{4}+x +25\right )}{5}-44 x \ln \relax (3)+\frac {x^{2} \ln \left (9 \,{\mathrm e}^{8}-30 \,{\mathrm e}^{4}+x +25\right )^{2}}{25}-\frac {2 \ln \relax (3) \ln \left (9 \,{\mathrm e}^{8}-30 \,{\mathrm e}^{4}+x +25\right ) x}{5}}{x^{2}}\) | \(74\) |
derivativedivides | \(\frac {2 \ln \relax (3) \ln \left (-x \right )}{5 \left (9 \,{\mathrm e}^{8}-30 \,{\mathrm e}^{4}+25\right )}-\frac {2 \ln \relax (3) \ln \left (9 \,{\mathrm e}^{8}-30 \,{\mathrm e}^{4}+x +25\right ) \left (9 \,{\mathrm e}^{8}-30 \,{\mathrm e}^{4}+x +25\right )}{5 \left (9 \,{\mathrm e}^{8}-30 \,{\mathrm e}^{4}+25\right ) x}-\frac {44 \ln \relax (3)}{x}-\frac {2 \ln \relax (3) \ln \relax (x )}{5 \left (9 \,{\mathrm e}^{8}-30 \,{\mathrm e}^{4}+25\right )}+\frac {2 \ln \relax (3) \ln \left (9 \,{\mathrm e}^{8}-30 \,{\mathrm e}^{4}+x +25\right )}{5 \left (9 \,{\mathrm e}^{8}-30 \,{\mathrm e}^{4}+25\right )}+\frac {44 \ln \left (9 \,{\mathrm e}^{8}-30 \,{\mathrm e}^{4}+x +25\right )}{5}+\frac {\ln \left (9 \,{\mathrm e}^{8}-30 \,{\mathrm e}^{4}+x +25\right )^{2}}{25}+\frac {\ln \relax (3)^{2}}{x^{2}}\) | \(211\) |
default | \(\frac {2 \ln \relax (3) \ln \left (-x \right )}{5 \left (9 \,{\mathrm e}^{8}-30 \,{\mathrm e}^{4}+25\right )}-\frac {2 \ln \relax (3) \ln \left (9 \,{\mathrm e}^{8}-30 \,{\mathrm e}^{4}+x +25\right ) \left (9 \,{\mathrm e}^{8}-30 \,{\mathrm e}^{4}+x +25\right )}{5 \left (9 \,{\mathrm e}^{8}-30 \,{\mathrm e}^{4}+25\right ) x}-\frac {44 \ln \relax (3)}{x}-\frac {2 \ln \relax (3) \ln \relax (x )}{5 \left (9 \,{\mathrm e}^{8}-30 \,{\mathrm e}^{4}+25\right )}+\frac {2 \ln \relax (3) \ln \left (9 \,{\mathrm e}^{8}-30 \,{\mathrm e}^{4}+x +25\right )}{5 \left (9 \,{\mathrm e}^{8}-30 \,{\mathrm e}^{4}+25\right )}+\frac {44 \ln \left (9 \,{\mathrm e}^{8}-30 \,{\mathrm e}^{4}+x +25\right )}{5}+\frac {\ln \left (9 \,{\mathrm e}^{8}-30 \,{\mathrm e}^{4}+x +25\right )^{2}}{25}+\frac {\ln \relax (3)^{2}}{x^{2}}\) | \(211\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.62, size = 841, normalized size = 32.35 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 3.09, size = 88, normalized size = 3.38 \begin {gather*} \frac {44\,\ln \left (x+{\left (3\,{\mathrm {e}}^4-5\right )}^2\right )}{5}-\frac {220\,x\,\ln \relax (3)-5\,{\ln \relax (3)}^2}{5\,x^2}+\frac {{\ln \left (x-30\,{\mathrm {e}}^4+9\,{\mathrm {e}}^8+25\right )}^2}{25}-\frac {\ln \left (x-30\,{\mathrm {e}}^4+9\,{\mathrm {e}}^8+25\right )\,\left (\frac {12\,{\mathrm {e}}^4}{5}-\frac {18\,{\mathrm {e}}^8}{25}+\frac {2\,\ln \relax (3)}{5}+\frac {2\,{\left (3\,{\mathrm {e}}^4-5\right )}^2}{25}-2\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 2.99, size = 75, normalized size = 2.88 \begin {gather*} \frac {\log {\left (x - 30 e^{4} + 25 + 9 e^{8} \right )}^{2}}{25} + \frac {44 \log {\left (x - 30 e^{4} + 25 + 9 e^{8} \right )}}{5} - \frac {2 \log {\relax (3 )} \log {\left (x - 30 e^{4} + 25 + 9 e^{8} \right )}}{5 x} + \frac {- 44 x \log {\relax (3 )} + \log {\relax (3 )}^{2}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________