Optimal. Leaf size=20 \[ 1+e^{\left (1+\frac {1}{x+\frac {5}{\log (2 x)}}\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 8.42, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {25+(10+10 x) \log (2 x)+\left (1+2 x+x^2\right ) \log ^2(2 x)}{25+10 x \log (2 x)+x^2 \log ^2(2 x)}\right ) \left (50+(10+10 x) \log (2 x)-10 x \log ^2(2 x)+\left (-2 x-2 x^2\right ) \log ^3(2 x)\right )}{125 x+75 x^2 \log (2 x)+15 x^3 \log ^2(2 x)+x^4 \log ^3(2 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (\frac {(5+\log (2 x)+x \log (2 x))^2}{(5+x \log (2 x))^2}\right ) \left (50+(10+10 x) \log (2 x)-10 x \log ^2(2 x)+\left (-2 x-2 x^2\right ) \log ^3(2 x)\right )}{x (5+x \log (2 x))^3} \, dx\\ &=\int \left (-\frac {2 \exp \left (\frac {(5+\log (2 x)+x \log (2 x))^2}{(5+x \log (2 x))^2}\right ) (1+x)}{x^3}-\frac {50 \exp \left (\frac {(5+\log (2 x)+x \log (2 x))^2}{(5+x \log (2 x))^2}\right ) (-5+x)}{x^3 (5+x \log (2 x))^3}+\frac {10 \exp \left (\frac {(5+\log (2 x)+x \log (2 x))^2}{(5+x \log (2 x))^2}\right ) \left (-15-4 x+x^2\right )}{x^3 (5+x \log (2 x))^2}+\frac {10 \exp \left (\frac {(5+\log (2 x)+x \log (2 x))^2}{(5+x \log (2 x))^2}\right ) (3+2 x)}{x^3 (5+x \log (2 x))}\right ) \, dx\\ &=-\left (2 \int \frac {\exp \left (\frac {(5+\log (2 x)+x \log (2 x))^2}{(5+x \log (2 x))^2}\right ) (1+x)}{x^3} \, dx\right )+10 \int \frac {\exp \left (\frac {(5+\log (2 x)+x \log (2 x))^2}{(5+x \log (2 x))^2}\right ) \left (-15-4 x+x^2\right )}{x^3 (5+x \log (2 x))^2} \, dx+10 \int \frac {\exp \left (\frac {(5+\log (2 x)+x \log (2 x))^2}{(5+x \log (2 x))^2}\right ) (3+2 x)}{x^3 (5+x \log (2 x))} \, dx-50 \int \frac {\exp \left (\frac {(5+\log (2 x)+x \log (2 x))^2}{(5+x \log (2 x))^2}\right ) (-5+x)}{x^3 (5+x \log (2 x))^3} \, dx\\ &=-\left (2 \int \left (\frac {\exp \left (\frac {(5+\log (2 x)+x \log (2 x))^2}{(5+x \log (2 x))^2}\right )}{x^3}+\frac {\exp \left (\frac {(5+\log (2 x)+x \log (2 x))^2}{(5+x \log (2 x))^2}\right )}{x^2}\right ) \, dx\right )+10 \int \left (-\frac {15 \exp \left (\frac {(5+\log (2 x)+x \log (2 x))^2}{(5+x \log (2 x))^2}\right )}{x^3 (5+x \log (2 x))^2}-\frac {4 \exp \left (\frac {(5+\log (2 x)+x \log (2 x))^2}{(5+x \log (2 x))^2}\right )}{x^2 (5+x \log (2 x))^2}+\frac {\exp \left (\frac {(5+\log (2 x)+x \log (2 x))^2}{(5+x \log (2 x))^2}\right )}{x (5+x \log (2 x))^2}\right ) \, dx+10 \int \left (\frac {3 \exp \left (\frac {(5+\log (2 x)+x \log (2 x))^2}{(5+x \log (2 x))^2}\right )}{x^3 (5+x \log (2 x))}+\frac {2 \exp \left (\frac {(5+\log (2 x)+x \log (2 x))^2}{(5+x \log (2 x))^2}\right )}{x^2 (5+x \log (2 x))}\right ) \, dx-50 \int \left (-\frac {5 \exp \left (\frac {(5+\log (2 x)+x \log (2 x))^2}{(5+x \log (2 x))^2}\right )}{x^3 (5+x \log (2 x))^3}+\frac {\exp \left (\frac {(5+\log (2 x)+x \log (2 x))^2}{(5+x \log (2 x))^2}\right )}{x^2 (5+x \log (2 x))^3}\right ) \, dx\\ &=-\left (2 \int \frac {\exp \left (\frac {(5+\log (2 x)+x \log (2 x))^2}{(5+x \log (2 x))^2}\right )}{x^3} \, dx\right )-2 \int \frac {\exp \left (\frac {(5+\log (2 x)+x \log (2 x))^2}{(5+x \log (2 x))^2}\right )}{x^2} \, dx+10 \int \frac {\exp \left (\frac {(5+\log (2 x)+x \log (2 x))^2}{(5+x \log (2 x))^2}\right )}{x (5+x \log (2 x))^2} \, dx+20 \int \frac {\exp \left (\frac {(5+\log (2 x)+x \log (2 x))^2}{(5+x \log (2 x))^2}\right )}{x^2 (5+x \log (2 x))} \, dx+30 \int \frac {\exp \left (\frac {(5+\log (2 x)+x \log (2 x))^2}{(5+x \log (2 x))^2}\right )}{x^3 (5+x \log (2 x))} \, dx-40 \int \frac {\exp \left (\frac {(5+\log (2 x)+x \log (2 x))^2}{(5+x \log (2 x))^2}\right )}{x^2 (5+x \log (2 x))^2} \, dx-50 \int \frac {\exp \left (\frac {(5+\log (2 x)+x \log (2 x))^2}{(5+x \log (2 x))^2}\right )}{x^2 (5+x \log (2 x))^3} \, dx-150 \int \frac {\exp \left (\frac {(5+\log (2 x)+x \log (2 x))^2}{(5+x \log (2 x))^2}\right )}{x^3 (5+x \log (2 x))^2} \, dx+250 \int \frac {\exp \left (\frac {(5+\log (2 x)+x \log (2 x))^2}{(5+x \log (2 x))^2}\right )}{x^3 (5+x \log (2 x))^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 5.36, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{\frac {25+(10+10 x) \log (2 x)+\left (1+2 x+x^2\right ) \log ^2(2 x)}{25+10 x \log (2 x)+x^2 \log ^2(2 x)}} \left (50+(10+10 x) \log (2 x)-10 x \log ^2(2 x)+\left (-2 x-2 x^2\right ) \log ^3(2 x)\right )}{125 x+75 x^2 \log (2 x)+15 x^3 \log ^2(2 x)+x^4 \log ^3(2 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.87, size = 49, normalized size = 2.45 \begin {gather*} e^{\left (\frac {{\left (x^{2} + 2 \, x + 1\right )} \log \left (2 \, x\right )^{2} + 10 \, {\left (x + 1\right )} \log \left (2 \, x\right ) + 25}{x^{2} \log \left (2 \, x\right )^{2} + 10 \, x \log \left (2 \, x\right ) + 25}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 48.24, size = 169, normalized size = 8.45 \begin {gather*} e^{\left (\frac {x^{2} \log \left (2 \, x\right )^{2}}{x^{2} \log \left (2 \, x\right )^{2} + 10 \, x \log \left (2 \, x\right ) + 25} + \frac {2 \, x \log \left (2 \, x\right )^{2}}{x^{2} \log \left (2 \, x\right )^{2} + 10 \, x \log \left (2 \, x\right ) + 25} + \frac {10 \, x \log \left (2 \, x\right )}{x^{2} \log \left (2 \, x\right )^{2} + 10 \, x \log \left (2 \, x\right ) + 25} + \frac {\log \left (2 \, x\right )^{2}}{x^{2} \log \left (2 \, x\right )^{2} + 10 \, x \log \left (2 \, x\right ) + 25} + \frac {10 \, \log \left (2 \, x\right )}{x^{2} \log \left (2 \, x\right )^{2} + 10 \, x \log \left (2 \, x\right ) + 25} + \frac {25}{x^{2} \log \left (2 \, x\right )^{2} + 10 \, x \log \left (2 \, x\right ) + 25}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 27, normalized size = 1.35
method | result | size |
risch | \({\mathrm e}^{\frac {\left (x \ln \left (2 x \right )+\ln \left (2 x \right )+5\right )^{2}}{\left (x \ln \left (2 x \right )+5\right )^{2}}}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.38, size = 168, normalized size = 8.40 \begin {gather*} e^{\left (\frac {\log \relax (2)^{2}}{x^{2} \log \relax (2)^{2} + x^{2} \log \relax (x)^{2} + 10 \, x \log \relax (2) + 2 \, {\left (x^{2} \log \relax (2) + 5 \, x\right )} \log \relax (x) + 25} + \frac {2 \, \log \relax (2) \log \relax (x)}{x^{2} \log \relax (2)^{2} + x^{2} \log \relax (x)^{2} + 10 \, x \log \relax (2) + 2 \, {\left (x^{2} \log \relax (2) + 5 \, x\right )} \log \relax (x) + 25} + \frac {\log \relax (x)^{2}}{x^{2} \log \relax (2)^{2} + x^{2} \log \relax (x)^{2} + 10 \, x \log \relax (2) + 2 \, {\left (x^{2} \log \relax (2) + 5 \, x\right )} \log \relax (x) + 25} + \frac {2 \, \log \relax (2)}{x \log \relax (2) + x \log \relax (x) + 5} + \frac {2 \, \log \relax (x)}{x \log \relax (2) + x \log \relax (x) + 5} + 1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.60, size = 429, normalized size = 21.45 \begin {gather*} {1024}^{\frac {x+1}{x^2\,{\ln \relax (x)}^2+2\,\ln \relax (2)\,x^2\,\ln \relax (x)+{\ln \relax (2)}^2\,x^2+10\,x\,\ln \relax (x)+10\,\ln \relax (2)\,x+25}}\,x^{\frac {2\,\left (5\,x+\ln \relax (2)+2\,x\,\ln \relax (2)+x^2\,\ln \relax (2)+5\right )}{x^2\,{\ln \relax (x)}^2+2\,\ln \relax (2)\,x^2\,\ln \relax (x)+{\ln \relax (2)}^2\,x^2+10\,x\,\ln \relax (x)+10\,\ln \relax (2)\,x+25}}\,{\mathrm {e}}^{\frac {x^2\,{\ln \relax (2)}^2}{x^2\,{\ln \relax (x)}^2+2\,\ln \relax (2)\,x^2\,\ln \relax (x)+{\ln \relax (2)}^2\,x^2+10\,x\,\ln \relax (x)+10\,\ln \relax (2)\,x+25}}\,{\mathrm {e}}^{\frac {2\,x\,{\ln \relax (x)}^2}{x^2\,{\ln \relax (x)}^2+2\,\ln \relax (2)\,x^2\,\ln \relax (x)+{\ln \relax (2)}^2\,x^2+10\,x\,\ln \relax (x)+10\,\ln \relax (2)\,x+25}}\,{\mathrm {e}}^{\frac {{\ln \relax (2)}^2}{x^2\,{\ln \relax (x)}^2+2\,\ln \relax (2)\,x^2\,\ln \relax (x)+{\ln \relax (2)}^2\,x^2+10\,x\,\ln \relax (x)+10\,\ln \relax (2)\,x+25}}\,{\mathrm {e}}^{\frac {25}{x^2\,{\ln \relax (x)}^2+2\,\ln \relax (2)\,x^2\,\ln \relax (x)+{\ln \relax (2)}^2\,x^2+10\,x\,\ln \relax (x)+10\,\ln \relax (2)\,x+25}}\,{\mathrm {e}}^{\frac {x^2\,{\ln \relax (x)}^2}{x^2\,{\ln \relax (x)}^2+2\,\ln \relax (2)\,x^2\,\ln \relax (x)+{\ln \relax (2)}^2\,x^2+10\,x\,\ln \relax (x)+10\,\ln \relax (2)\,x+25}}\,{\mathrm {e}}^{\frac {{\ln \relax (x)}^2}{x^2\,{\ln \relax (x)}^2+2\,\ln \relax (2)\,x^2\,\ln \relax (x)+{\ln \relax (2)}^2\,x^2+10\,x\,\ln \relax (x)+10\,\ln \relax (2)\,x+25}}\,{\mathrm {e}}^{\frac {2\,x\,{\ln \relax (2)}^2}{x^2\,{\ln \relax (x)}^2+2\,\ln \relax (2)\,x^2\,\ln \relax (x)+{\ln \relax (2)}^2\,x^2+10\,x\,\ln \relax (x)+10\,\ln \relax (2)\,x+25}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.86, size = 48, normalized size = 2.40 \begin {gather*} e^{\frac {\left (10 x + 10\right ) \log {\left (2 x \right )} + \left (x^{2} + 2 x + 1\right ) \log {\left (2 x \right )}^{2} + 25}{x^{2} \log {\left (2 x \right )}^{2} + 10 x \log {\left (2 x \right )} + 25}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________