Optimal. Leaf size=25 \[ \frac {\log (5)}{-1+e^x-e^{e^5 (2+x)}+x \log (16)} \]
________________________________________________________________________________________
Rubi [A] time = 0.40, antiderivative size = 27, normalized size of antiderivative = 1.08, number of steps used = 3, number of rules used = 3, integrand size = 94, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.032, Rules used = {6688, 12, 6686} \begin {gather*} -\frac {\log (5)}{-e^x+e^{e^5 (x+2)}+x (-\log (16))+1} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\log (5) \left (-e^x+e^{5+e^5 (2+x)}-\log (16)\right )}{\left (1-e^x+e^{e^5 (2+x)}-x \log (16)\right )^2} \, dx\\ &=\log (5) \int \frac {-e^x+e^{5+e^5 (2+x)}-\log (16)}{\left (1-e^x+e^{e^5 (2+x)}-x \log (16)\right )^2} \, dx\\ &=-\frac {\log (5)}{1-e^x+e^{e^5 (2+x)}-x \log (16)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 25, normalized size = 1.00 \begin {gather*} \frac {\log (5)}{-1+e^x-e^{e^5 (2+x)}+x \log (16)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 34, normalized size = 1.36 \begin {gather*} \frac {e^{5} \log \relax (5)}{4 \, x e^{5} \log \relax (2) - e^{5} - e^{\left ({\left (x + 2\right )} e^{5} + 5\right )} + e^{\left (x + 5\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.29, size = 26, normalized size = 1.04 \begin {gather*} \frac {\log \relax (5)}{4 \, x \log \relax (2) - e^{\left (x e^{5} + 2 \, e^{5}\right )} + e^{x} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.69, size = 24, normalized size = 0.96
method | result | size |
norman | \(\frac {\ln \relax (5)}{{\mathrm e}^{x}-1-{\mathrm e}^{\left (2+x \right ) {\mathrm e}^{5}}+4 x \ln \relax (2)}\) | \(24\) |
risch | \(\frac {\ln \relax (5)}{{\mathrm e}^{x}-1-{\mathrm e}^{\left (2+x \right ) {\mathrm e}^{5}}+4 x \ln \relax (2)}\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.94, size = 26, normalized size = 1.04 \begin {gather*} \frac {\log \relax (5)}{4 \, x \log \relax (2) - e^{\left (x e^{5} + 2 \, e^{5}\right )} + e^{x} - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {4\,\ln \relax (2)\,\ln \relax (5)+{\mathrm {e}}^x\,\ln \relax (5)-{\mathrm {e}}^{{\mathrm {e}}^5\,\left (x+2\right )}\,{\mathrm {e}}^5\,\ln \relax (5)}{{\mathrm {e}}^{2\,{\mathrm {e}}^5\,\left (x+2\right )}+{\mathrm {e}}^{2\,x}+16\,x^2\,{\ln \relax (2)}^2-{\mathrm {e}}^{{\mathrm {e}}^5\,\left (x+2\right )}\,\left (2\,{\mathrm {e}}^x+8\,x\,\ln \relax (2)-2\right )-8\,x\,\ln \relax (2)+{\mathrm {e}}^x\,\left (8\,x\,\ln \relax (2)-2\right )+1} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________