Optimal. Leaf size=30 \[ 5 \left (10+\frac {\frac {4}{5}-x^2}{8 (-2+x) \left (1+e^4+x\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.14, antiderivative size = 51, normalized size of antiderivative = 1.70, number of steps used = 4, number of rules used = 4, integrand size = 77, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.052, Rules used = {1680, 12, 1814, 8} \begin {gather*} \frac {5 \left (1-e^4\right ) x+2 \left (3+5 e^4\right )}{2 \left (\left (3+e^4\right )^2-4 \left (x+\frac {1}{32} \left (16 e^4-16\right )\right )^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 8
Rule 12
Rule 1680
Rule 1814
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\operatorname {Subst}\left (\int \frac {5 \left (1-e^4\right ) \left (3+e^4\right )^2+4 \left (17+10 e^4+5 e^8\right ) x+20 \left (1-e^4\right ) x^2}{2 \left (9+6 e^4+e^8-4 x^2\right )^2} \, dx,x,\frac {1}{32} \left (-16+16 e^4\right )+x\right )\\ &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {5 \left (1-e^4\right ) \left (3+e^4\right )^2+4 \left (17+10 e^4+5 e^8\right ) x+20 \left (1-e^4\right ) x^2}{\left (9+6 e^4+e^8-4 x^2\right )^2} \, dx,x,\frac {1}{32} \left (-16+16 e^4\right )+x\right )\\ &=\frac {2 \left (3+5 e^4\right )+5 \left (1-e^4\right ) x}{2 \left (\left (3+e^4\right )^2-\left (1-e^4-2 x\right )^2\right )}-\frac {\operatorname {Subst}\left (\int 0 \, dx,x,\frac {1}{32} \left (-16+16 e^4\right )+x\right )}{4 \left (3+e^4\right )^2}\\ &=\frac {2 \left (3+5 e^4\right )+5 \left (1-e^4\right ) x}{2 \left (\left (3+e^4\right )^2-\left (1-e^4-2 x\right )^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 34, normalized size = 1.13 \begin {gather*} \frac {-6+5 e^4 (-2+x)-5 x}{8 \left (-2+e^4 (-2+x)-x+x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.86, size = 30, normalized size = 1.00 \begin {gather*} \frac {5 \, {\left (x - 2\right )} e^{4} - 5 \, x - 6}{8 \, {\left (x^{2} + {\left (x - 2\right )} e^{4} - x - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 34, normalized size = 1.13
method | result | size |
norman | \(\frac {\left (\frac {5 \,{\mathrm e}^{4}}{8}-\frac {5}{8}\right ) x -\frac {5 \,{\mathrm e}^{4}}{4}-\frac {3}{4}}{\left (x -2\right ) \left ({\mathrm e}^{4}+x +1\right )}\) | \(34\) |
risch | \(\frac {\left (\frac {5 \,{\mathrm e}^{4}}{8}-\frac {5}{8}\right ) x -\frac {5 \,{\mathrm e}^{4}}{4}-\frac {3}{4}}{x \,{\mathrm e}^{4}-2 \,{\mathrm e}^{4}+x^{2}-x -2}\) | \(34\) |
gosper | \(\frac {5 x \,{\mathrm e}^{4}-10 \,{\mathrm e}^{4}-5 x -6}{8 x \,{\mathrm e}^{4}-16 \,{\mathrm e}^{4}+8 x^{2}-8 x -16}\) | \(43\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 32, normalized size = 1.07 \begin {gather*} \frac {5 \, x {\left (e^{4} - 1\right )} - 10 \, e^{4} - 6}{8 \, {\left (x^{2} + x {\left (e^{4} - 1\right )} - 2 \, e^{4} - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.21, size = 28, normalized size = 0.93 \begin {gather*} -\frac {5\,x+10\,{\mathrm {e}}^4-5\,x\,{\mathrm {e}}^4+6}{8\,\left (x-2\right )\,\left (x+{\mathrm {e}}^4+1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.68, size = 34, normalized size = 1.13 \begin {gather*} \frac {x \left (-5 + 5 e^{4}\right ) - 10 e^{4} - 6}{8 x^{2} + x \left (-8 + 8 e^{4}\right ) - 16 e^{4} - 16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________