Optimal. Leaf size=16 \[ \frac {x}{\log \left (\frac {e^3}{x}\right ) \log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.25, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\log \left (\frac {e^3}{x}\right ) (-1+\log (x))+\log (x)}{\log ^2\left (\frac {e^3}{x}\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {1}{\left (3+\log \left (\frac {1}{x}\right )\right ) \log ^2(x)}+\frac {4+\log \left (\frac {1}{x}\right )}{\left (3+\log \left (\frac {1}{x}\right )\right )^2 \log (x)}\right ) \, dx\\ &=-\int \frac {1}{\left (3+\log \left (\frac {1}{x}\right )\right ) \log ^2(x)} \, dx+\int \frac {4+\log \left (\frac {1}{x}\right )}{\left (3+\log \left (\frac {1}{x}\right )\right )^2 \log (x)} \, dx\\ &=\int \left (\frac {4}{\left (3+\log \left (\frac {1}{x}\right )\right )^2 \log (x)}+\frac {\log \left (\frac {1}{x}\right )}{\left (3+\log \left (\frac {1}{x}\right )\right )^2 \log (x)}\right ) \, dx-\int \frac {1}{\left (3+\log \left (\frac {1}{x}\right )\right ) \log ^2(x)} \, dx\\ &=4 \int \frac {1}{\left (3+\log \left (\frac {1}{x}\right )\right )^2 \log (x)} \, dx-\int \frac {1}{\left (3+\log \left (\frac {1}{x}\right )\right ) \log ^2(x)} \, dx+\int \frac {\log \left (\frac {1}{x}\right )}{\left (3+\log \left (\frac {1}{x}\right )\right )^2 \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 14, normalized size = 0.88 \begin {gather*} \frac {x}{\left (3+\log \left (\frac {1}{x}\right )\right ) \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 14, normalized size = 0.88 \begin {gather*} -\frac {x}{\log \relax (x)^{2} - 3 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 14, normalized size = 0.88 \begin {gather*} -\frac {x}{\log \relax (x)^{2} - 3 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.25, size = 16, normalized size = 1.00
method | result | size |
norman | \(\frac {x}{\ln \left (\frac {{\mathrm e}^{3}}{x}\right ) \ln \relax (x )}\) | \(16\) |
risch | \(\frac {2 i x}{\left (-2 i \ln \relax (x )+6 i\right ) \ln \relax (x )}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 14, normalized size = 0.88 \begin {gather*} -\frac {x}{\log \relax (x)^{2} - 3 \, \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.32, size = 14, normalized size = 0.88 \begin {gather*} \frac {x}{\ln \relax (x)\,\left (\ln \left (\frac {1}{x}\right )+3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.24, size = 12, normalized size = 0.75 \begin {gather*} - \frac {x}{\log {\relax (x )}^{2} - 3 \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________