Optimal. Leaf size=27 \[ \frac {(1-e) \left (x+\frac {\log (2)}{e^3}\right )}{2-\frac {\log (5)}{2 x}} \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 44, normalized size of antiderivative = 1.63, number of steps used = 4, number of rules used = 3, integrand size = 69, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.043, Rules used = {27, 12, 1850} \begin {gather*} \frac {1}{2} (1-e) x+\frac {(1-e) \log (5) \left (e^3 \log (5)+\log (16)\right )}{8 e^3 (4 x-\log (5))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 1850
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^3 \left (8 x^2-8 e x^2\right )+\left (e^3 (-4 x+4 e x)+(-2+2 e) \log (2)\right ) \log (5)}{e^3 (4 x-\log (5))^2} \, dx\\ &=\frac {\int \frac {e^3 \left (8 x^2-8 e x^2\right )+\left (e^3 (-4 x+4 e x)+(-2+2 e) \log (2)\right ) \log (5)}{(4 x-\log (5))^2} \, dx}{e^3}\\ &=\frac {\int \left (-\frac {1}{2} (-1+e) e^3+\frac {(-1+e) \log (5) \left (e^3 \log (5)+\log (16)\right )}{2 (-4 x+\log (5))^2}\right ) \, dx}{e^3}\\ &=\frac {1}{2} (1-e) x+\frac {(1-e) \log (5) \left (e^3 \log (5)+\log (16)\right )}{8 e^3 (4 x-\log (5))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 43, normalized size = 1.59 \begin {gather*} -\frac {2 (-1+e) \left (\log (4) \log (5)+e^3 \left (8 x^2-4 x \log (5)+\log ^2(5)\right )\right )}{e^3 (32 x-8 \log (5))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.72, size = 65, normalized size = 2.41 \begin {gather*} -\frac {16 \, x^{2} e^{4} - 16 \, x^{2} e^{3} + {\left (e^{4} - e^{3}\right )} \log \relax (5)^{2} - 4 \, {\left (x e^{4} - x e^{3} - {\left (e - 1\right )} \log \relax (2)\right )} \log \relax (5)}{8 \, {\left (4 \, x e^{3} - e^{3} \log \relax (5)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.16, size = 59, normalized size = 2.19 \begin {gather*} -\frac {1}{2} \, {\left (x e^{4} - x e^{3}\right )} e^{\left (-3\right )} - \frac {{\left (e^{4} \log \relax (5)^{2} - e^{3} \log \relax (5)^{2} + 4 \, e \log \relax (5) \log \relax (2) - 4 \, \log \relax (5) \log \relax (2)\right )} e^{\left (-3\right )}}{8 \, {\left (4 \, x - \log \relax (5)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 32, normalized size = 1.19
method | result | size |
gosper | \(\frac {\left (4 x^{2} {\mathrm e}^{3}+\ln \relax (2) \ln \relax (5)\right ) \left ({\mathrm e}-1\right ) {\mathrm e}^{-3}}{2 \ln \relax (5)-8 x}\) | \(32\) |
norman | \(\frac {\left (2 \,{\mathrm e}-2\right ) x^{2}+\frac {\ln \relax (5) \ln \relax (2) \left ({\mathrm e}-1\right ) {\mathrm e}^{-3}}{2}}{\ln \relax (5)-4 x}\) | \(35\) |
default | \(\left (2 \,{\mathrm e}-2\right ) {\mathrm e}^{-3} \left (-\frac {x \,{\mathrm e}^{3}}{4}-\frac {\ln \relax (5) \left ({\mathrm e}^{3} \ln \relax (5)+4 \ln \relax (2)\right )}{16 \left (4 x -\ln \relax (5)\right )}\right )\) | \(42\) |
risch | \(-\frac {x \,{\mathrm e}}{2}+\frac {x}{2}+\frac {{\mathrm e}^{-3} \ln \relax (5)^{2} {\mathrm e}^{4}}{8 \ln \relax (5)-32 x}-\frac {{\mathrm e}^{-3} {\mathrm e}^{3} \ln \relax (5)^{2}}{8 \left (\ln \relax (5)-4 x \right )}+\frac {{\mathrm e}^{-3} \ln \relax (5) {\mathrm e} \ln \relax (2)}{2 \ln \relax (5)-8 x}-\frac {{\mathrm e}^{-3} \ln \relax (5) \ln \relax (2)}{2 \left (\ln \relax (5)-4 x \right )}\) | \(80\) |
meijerg | \(\frac {2 \ln \relax (2) \left ({\mathrm e}-1\right ) {\mathrm e}^{-3} x}{\ln \relax (5) \left (1-\frac {4 x}{\ln \relax (5)}\right )}-\frac {\left (-\frac {{\mathrm e}}{2}+\frac {1}{2}\right ) \ln \relax (5) \left (-\frac {4 x \left (-\frac {12 x}{\ln \relax (5)}+6\right )}{3 \ln \relax (5) \left (1-\frac {4 x}{\ln \relax (5)}\right )}-2 \ln \left (1-\frac {4 x}{\ln \relax (5)}\right )\right )}{4}-\frac {\left (1-{\mathrm e}\right ) \ln \relax (5) \left (\frac {4 x}{\ln \relax (5) \left (1-\frac {4 x}{\ln \relax (5)}\right )}+\ln \left (1-\frac {4 x}{\ln \relax (5)}\right )\right )}{4}\) | \(117\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.65, size = 47, normalized size = 1.74 \begin {gather*} -\frac {1}{2} \, x {\left (e - 1\right )} - \frac {{\left (e^{4} - e^{3}\right )} \log \relax (5)^{2} + 4 \, {\left (e - 1\right )} \log \relax (5) \log \relax (2)}{8 \, {\left (4 \, x e^{3} - e^{3} \log \relax (5)\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.26, size = 46, normalized size = 1.70 \begin {gather*} -\frac {{\mathrm {e}}^{-3}\,\left (\mathrm {e}-1\right )\,\left (16\,{\mathrm {e}}^3\,x^2-4\,{\mathrm {e}}^3\,\ln \relax (5)\,x+4\,\ln \relax (2)\,\ln \relax (5)+{\mathrm {e}}^3\,{\ln \relax (5)}^2\right )}{8\,\left (4\,x-\ln \relax (5)\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.35, size = 61, normalized size = 2.26 \begin {gather*} x \left (\frac {1}{2} - \frac {e}{2}\right ) + \frac {- e^{4} \log {\relax (5 )}^{2} - 4 e \log {\relax (2 )} \log {\relax (5 )} + 4 \log {\relax (2 )} \log {\relax (5 )} + e^{3} \log {\relax (5 )}^{2}}{32 x e^{3} - 8 e^{3} \log {\relax (5 )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________