Optimal. Leaf size=29 \[ -\frac {5-x}{-4+2 x}+\left (x+3 x^2 \left (e^x+x\right )\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.79, antiderivative size = 51, normalized size of antiderivative = 1.76, number of steps used = 49, number of rules used = 7, integrand size = 110, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.064, Rules used = {27, 12, 6742, 43, 2196, 2176, 2194} \begin {gather*} 9 x^6+18 e^x x^5+9 e^{2 x} x^4+6 x^4+6 e^x x^3+x^2+\frac {3}{2 (2-x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 43
Rule 2176
Rule 2194
Rule 2196
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3+16 x-16 x^2+196 x^3-192 x^4+480 x^5-432 x^6+108 x^7+e^{2 x} \left (288 x^3-144 x^4-72 x^5+36 x^6\right )+e^x \left (144 x^2-96 x^3+708 x^4-564 x^5+36 x^6+36 x^7\right )}{2 (-2+x)^2} \, dx\\ &=\frac {1}{2} \int \frac {3+16 x-16 x^2+196 x^3-192 x^4+480 x^5-432 x^6+108 x^7+e^{2 x} \left (288 x^3-144 x^4-72 x^5+36 x^6\right )+e^x \left (144 x^2-96 x^3+708 x^4-564 x^5+36 x^6+36 x^7\right )}{(-2+x)^2} \, dx\\ &=\frac {1}{2} \int \left (\frac {3}{(-2+x)^2}+\frac {16 x}{(-2+x)^2}-\frac {16 x^2}{(-2+x)^2}+\frac {196 x^3}{(-2+x)^2}-\frac {192 x^4}{(-2+x)^2}+\frac {480 x^5}{(-2+x)^2}-\frac {432 x^6}{(-2+x)^2}+\frac {108 x^7}{(-2+x)^2}+36 e^{2 x} x^3 (2+x)+12 e^x x^2 \left (3+x+15 x^2+3 x^3\right )\right ) \, dx\\ &=\frac {3}{2 (2-x)}+6 \int e^x x^2 \left (3+x+15 x^2+3 x^3\right ) \, dx+8 \int \frac {x}{(-2+x)^2} \, dx-8 \int \frac {x^2}{(-2+x)^2} \, dx+18 \int e^{2 x} x^3 (2+x) \, dx+54 \int \frac {x^7}{(-2+x)^2} \, dx-96 \int \frac {x^4}{(-2+x)^2} \, dx+98 \int \frac {x^3}{(-2+x)^2} \, dx-216 \int \frac {x^6}{(-2+x)^2} \, dx+240 \int \frac {x^5}{(-2+x)^2} \, dx\\ &=\frac {3}{2 (2-x)}+6 \int \left (3 e^x x^2+e^x x^3+15 e^x x^4+3 e^x x^5\right ) \, dx+8 \int \left (\frac {2}{(-2+x)^2}+\frac {1}{-2+x}\right ) \, dx-8 \int \left (1+\frac {4}{(-2+x)^2}+\frac {4}{-2+x}\right ) \, dx+18 \int \left (2 e^{2 x} x^3+e^{2 x} x^4\right ) \, dx+54 \int \left (192+\frac {128}{(-2+x)^2}+\frac {448}{-2+x}+80 x+32 x^2+12 x^3+4 x^4+x^5\right ) \, dx-96 \int \left (12+\frac {16}{(-2+x)^2}+\frac {32}{-2+x}+4 x+x^2\right ) \, dx+98 \int \left (4+\frac {8}{(-2+x)^2}+\frac {12}{-2+x}+x\right ) \, dx-216 \int \left (80+\frac {64}{(-2+x)^2}+\frac {192}{-2+x}+32 x+12 x^2+4 x^3+x^4\right ) \, dx+240 \int \left (32+\frac {32}{(-2+x)^2}+\frac {80}{-2+x}+12 x+4 x^2+x^3\right ) \, dx\\ &=\frac {3}{2 (2-x)}+x^2+6 x^4+9 x^6+6 \int e^x x^3 \, dx+18 \int e^x x^2 \, dx+18 \int e^{2 x} x^4 \, dx+18 \int e^x x^5 \, dx+36 \int e^{2 x} x^3 \, dx+90 \int e^x x^4 \, dx\\ &=\frac {3}{2 (2-x)}+x^2+18 e^x x^2+6 e^x x^3+18 e^{2 x} x^3+6 x^4+90 e^x x^4+9 e^{2 x} x^4+18 e^x x^5+9 x^6-18 \int e^x x^2 \, dx-36 \int e^x x \, dx-36 \int e^{2 x} x^3 \, dx-54 \int e^{2 x} x^2 \, dx-90 \int e^x x^4 \, dx-360 \int e^x x^3 \, dx\\ &=\frac {3}{2 (2-x)}-36 e^x x+x^2-27 e^{2 x} x^2-354 e^x x^3+6 x^4+9 e^{2 x} x^4+18 e^x x^5+9 x^6+36 \int e^x \, dx+36 \int e^x x \, dx+54 \int e^{2 x} x \, dx+54 \int e^{2 x} x^2 \, dx+360 \int e^x x^3 \, dx+1080 \int e^x x^2 \, dx\\ &=36 e^x+\frac {3}{2 (2-x)}+27 e^{2 x} x+x^2+1080 e^x x^2+6 e^x x^3+6 x^4+9 e^{2 x} x^4+18 e^x x^5+9 x^6-27 \int e^{2 x} \, dx-36 \int e^x \, dx-54 \int e^{2 x} x \, dx-1080 \int e^x x^2 \, dx-2160 \int e^x x \, dx\\ &=-\frac {27 e^{2 x}}{2}+\frac {3}{2 (2-x)}-2160 e^x x+x^2+6 e^x x^3+6 x^4+9 e^{2 x} x^4+18 e^x x^5+9 x^6+27 \int e^{2 x} \, dx+2160 \int e^x \, dx+2160 \int e^x x \, dx\\ &=2160 e^x+\frac {3}{2 (2-x)}+x^2+6 e^x x^3+6 x^4+9 e^{2 x} x^4+18 e^x x^5+9 x^6-2160 \int e^x \, dx\\ &=\frac {3}{2 (2-x)}+x^2+6 e^x x^3+6 x^4+9 e^{2 x} x^4+18 e^x x^5+9 x^6\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 52, normalized size = 1.79 \begin {gather*} \frac {1}{2} \left (-\frac {3}{-2+x}+2 x^2+12 x^4+18 e^{2 x} x^4+18 x^6+e^x \left (12 x^3+36 x^5\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.64, size = 77, normalized size = 2.66 \begin {gather*} \frac {18 \, x^{7} - 36 \, x^{6} + 12 \, x^{5} - 24 \, x^{4} + 2 \, x^{3} - 4 \, x^{2} + 18 \, {\left (x^{5} - 2 \, x^{4}\right )} e^{\left (2 \, x\right )} + 12 \, {\left (3 \, x^{6} - 6 \, x^{5} + x^{4} - 2 \, x^{3}\right )} e^{x} - 3}{2 \, {\left (x - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.14, size = 85, normalized size = 2.93 \begin {gather*} \frac {18 \, x^{7} + 36 \, x^{6} e^{x} - 36 \, x^{6} + 18 \, x^{5} e^{\left (2 \, x\right )} - 72 \, x^{5} e^{x} + 12 \, x^{5} - 36 \, x^{4} e^{\left (2 \, x\right )} + 12 \, x^{4} e^{x} - 24 \, x^{4} - 24 \, x^{3} e^{x} + 2 \, x^{3} - 4 \, x^{2} - 3}{2 \, {\left (x - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.16, size = 45, normalized size = 1.55
method | result | size |
default | \(-\frac {3}{2 \left (x -2\right )}+x^{2}+6 x^{4}+9 x^{6}+6 \,{\mathrm e}^{x} x^{3}+9 \,{\mathrm e}^{2 x} x^{4}+18 x^{5} {\mathrm e}^{x}\) | \(45\) |
risch | \(9 x^{6}+6 x^{4}+x^{2}-\frac {3}{2 \left (x -2\right )}+9 \,{\mathrm e}^{2 x} x^{4}+\left (18 x^{5}+6 x^{3}\right ) {\mathrm e}^{x}\) | \(45\) |
norman | \(\frac {x^{3}-2 x^{2}-12 x^{4}+6 x^{5}-18 x^{6}+9 x^{7}-36 x^{5} {\mathrm e}^{x}+9 x^{5} {\mathrm e}^{2 x}+18 x^{6} {\mathrm e}^{x}-12 \,{\mathrm e}^{x} x^{3}+6 \,{\mathrm e}^{x} x^{4}-18 \,{\mathrm e}^{2 x} x^{4}-\frac {3}{2}}{x -2}\) | \(83\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.60, size = 43, normalized size = 1.48 \begin {gather*} 9 \, x^{6} + 9 \, x^{4} e^{\left (2 \, x\right )} + 6 \, x^{4} + x^{2} + 6 \, {\left (3 \, x^{5} + x^{3}\right )} e^{x} - \frac {3}{2 \, {\left (x - 2\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.13, size = 44, normalized size = 1.52 \begin {gather*} 6\,x^3\,{\mathrm {e}}^x+18\,x^5\,{\mathrm {e}}^x+x^4\,\left (9\,{\mathrm {e}}^{2\,x}+6\right )-\frac {3}{2\,x-4}+x^2+9\,x^6 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.21, size = 42, normalized size = 1.45 \begin {gather*} 9 x^{6} + 9 x^{4} e^{2 x} + 6 x^{4} + x^{2} + \left (18 x^{5} + 6 x^{3}\right ) e^{x} - \frac {3}{2 x - 4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________