Optimal. Leaf size=30 \[ x-\log \left (1+\frac {3}{\left (-e^4+\frac {25}{x^2}+x\right ) (1+5 x)^2}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.71, antiderivative size = 71, normalized size of antiderivative = 2.37, number of steps used = 4, number of rules used = 2, integrand size = 219, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.009, Rules used = {2074, 1587} \begin {gather*} \log \left (x^3-e^4 x^2+25\right )-\log \left (25 x^5+5 \left (2-5 e^4\right ) x^4+\left (1-10 e^4\right ) x^3+\left (628-e^4\right ) x^2+250 x+25\right )+x+2 \log (5 x+1) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1587
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1+\frac {10}{1+5 x}+\frac {x \left (-2 e^4+3 x\right )}{25-e^4 x^2+x^3}+\frac {-250-2 \left (628-e^4\right ) x-3 \left (1-10 e^4\right ) x^2-20 \left (2-5 e^4\right ) x^3-125 x^4}{25+250 x+628 \left (1-\frac {e^4}{628}\right ) x^2+\left (1-10 e^4\right ) x^3+10 \left (1-\frac {5 e^4}{2}\right ) x^4+25 x^5}\right ) \, dx\\ &=x+2 \log (1+5 x)+\int \frac {x \left (-2 e^4+3 x\right )}{25-e^4 x^2+x^3} \, dx+\int \frac {-250-2 \left (628-e^4\right ) x-3 \left (1-10 e^4\right ) x^2-20 \left (2-5 e^4\right ) x^3-125 x^4}{25+250 x+628 \left (1-\frac {e^4}{628}\right ) x^2+\left (1-10 e^4\right ) x^3+10 \left (1-\frac {5 e^4}{2}\right ) x^4+25 x^5} \, dx\\ &=x+2 \log (1+5 x)+\log \left (25-e^4 x^2+x^3\right )-\log \left (25+250 x+\left (628-e^4\right ) x^2+\left (1-10 e^4\right ) x^3+5 \left (2-5 e^4\right ) x^4+25 x^5\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.43, size = 145, normalized size = 4.83 \begin {gather*} x+2 \log (1+5 x)+\log \left (3124-5 e^4+3 (1+5 x)+10 e^4 (1+5 x)-3 (1+5 x)^2-5 e^4 (1+5 x)^2+(1+5 x)^3\right )-\log \left (15-30 (1+5 x)+3139 (1+5 x)^2-5 e^4 (1+5 x)^2+3 (1+5 x)^3+10 e^4 (1+5 x)^3-3 (1+5 x)^4-5 e^4 (1+5 x)^4+(1+5 x)^5\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.89, size = 67, normalized size = 2.23 \begin {gather*} x - \log \left (25 \, x^{5} + 10 \, x^{4} + x^{3} + 628 \, x^{2} - {\left (25 \, x^{4} + 10 \, x^{3} + x^{2}\right )} e^{4} + 250 \, x + 25\right ) + \log \left (x^{3} - x^{2} e^{4} + 25\right ) + 2 \, \log \left (5 \, x + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {125 \, x^{9} + 75 \, x^{8} + 15 \, x^{7} + 6266 \, x^{6} + 3798 \, x^{5} + 753 \, x^{4} + 78550 \, x^{3} + 46950 \, x^{2} + {\left (125 \, x^{7} + 75 \, x^{6} + 15 \, x^{5} + x^{4}\right )} e^{8} - {\left (250 \, x^{8} + 150 \, x^{7} + 30 \, x^{6} + 6267 \, x^{5} + 3783 \, x^{4} + 750 \, x^{3} + 50 \, x^{2}\right )} e^{4} + 9225 \, x + 625}{125 \, x^{9} + 75 \, x^{8} + 15 \, x^{7} + 6266 \, x^{6} + 3753 \, x^{5} + 750 \, x^{4} + 78550 \, x^{3} + 46950 \, x^{2} + {\left (125 \, x^{7} + 75 \, x^{6} + 15 \, x^{5} + x^{4}\right )} e^{8} - {\left (250 \, x^{8} + 150 \, x^{7} + 30 \, x^{6} + 6267 \, x^{5} + 3753 \, x^{4} + 750 \, x^{3} + 50 \, x^{2}\right )} e^{4} + 9375 \, x + 625}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.61, size = 67, normalized size = 2.23
method | result | size |
risch | \(x +2 \ln \left (1+5 x \right )+\ln \left (-x^{2} {\mathrm e}^{4}+x^{3}+25\right )-\ln \left (25 x^{5}+\left (-25 \,{\mathrm e}^{4}+10\right ) x^{4}+\left (-10 \,{\mathrm e}^{4}+1\right ) x^{3}+\left (-{\mathrm e}^{4}+628\right ) x^{2}+250 x +25\right )\) | \(67\) |
norman | \(x +2 \ln \left (1+5 x \right )-\ln \left (25 x^{4} {\mathrm e}^{4}-25 x^{5}+10 x^{3} {\mathrm e}^{4}-10 x^{4}+x^{2} {\mathrm e}^{4}-x^{3}-628 x^{2}-250 x -25\right )+\ln \left (x^{2} {\mathrm e}^{4}-x^{3}-25\right )\) | \(73\) |
default | \(x -\left (\munderset {\textit {\_R} =\RootOf \left (625+25 \textit {\_Z}^{8}+\left (-50 \,{\mathrm e}^{4}+10\right ) \textit {\_Z}^{7}+\left (-20 \,{\mathrm e}^{4}+25 \,{\mathrm e}^{8}+1\right ) \textit {\_Z}^{6}+\left (-2 \,{\mathrm e}^{4}+10 \,{\mathrm e}^{8}+1253\right ) \textit {\_Z}^{5}+\left (-1253 \,{\mathrm e}^{4}+{\mathrm e}^{8}+500\right ) \textit {\_Z}^{4}+\left (-500 \,{\mathrm e}^{4}+50\right ) \textit {\_Z}^{3}+\left (-50 \,{\mathrm e}^{4}+15700\right ) \textit {\_Z}^{2}+6250 \textit {\_Z} \right )}{\sum }\frac {\left (-6250-50 \textit {\_R}^{7}+10 \left (10 \,{\mathrm e}^{4}-1\right ) \textit {\_R}^{6}+10 \left (2 \,{\mathrm e}^{4}-5 \,{\mathrm e}^{8}\right ) \textit {\_R}^{5}+\left (-10 \,{\mathrm e}^{8}-2497\right ) \textit {\_R}^{4}+500 \left (5 \,{\mathrm e}^{4}-1\right ) \textit {\_R}^{3}+500 \textit {\_R}^{2} {\mathrm e}^{4}-31400 \textit {\_R} \right ) \ln \left (x -\textit {\_R} \right )}{350 \textit {\_R}^{6} {\mathrm e}^{4}-200 \textit {\_R}^{7}+120 \textit {\_R}^{5} {\mathrm e}^{4}-150 \textit {\_R}^{5} {\mathrm e}^{8}-70 \textit {\_R}^{6}+10 \textit {\_R}^{4} {\mathrm e}^{4}-50 \textit {\_R}^{4} {\mathrm e}^{8}-6 \textit {\_R}^{5}+5012 \textit {\_R}^{3} {\mathrm e}^{4}-4 \textit {\_R}^{3} {\mathrm e}^{8}-6265 \textit {\_R}^{4}+1500 \textit {\_R}^{2} {\mathrm e}^{4}-2000 \textit {\_R}^{3}+100 \textit {\_R} \,{\mathrm e}^{4}-150 \textit {\_R}^{2}-31400 \textit {\_R} -6250}\right )+2 \ln \left (1+5 x \right )\) | \(265\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.42, size = 67, normalized size = 2.23 \begin {gather*} x - \log \left (25 \, x^{5} - 5 \, x^{4} {\left (5 \, e^{4} - 2\right )} - x^{3} {\left (10 \, e^{4} - 1\right )} - x^{2} {\left (e^{4} - 628\right )} + 250 \, x + 25\right ) + \log \left (x^{3} - x^{2} e^{4} + 25\right ) + 2 \, \log \left (5 \, x + 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.08, size = 68, normalized size = 2.27 \begin {gather*} x+\ln \left (x^3-{\mathrm {e}}^4\,x^2+25\right )+2\,\ln \left (x+\frac {1}{5}\right )-\ln \left (10\,x-\frac {x^2\,{\mathrm {e}}^4}{25}-\frac {2\,x^3\,{\mathrm {e}}^4}{5}-x^4\,{\mathrm {e}}^4+\frac {628\,x^2}{25}+\frac {x^3}{25}+\frac {2\,x^4}{5}+x^5+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 19.38, size = 68, normalized size = 2.27 \begin {gather*} x + 2 \log {\left (5 x + 1 \right )} + \log {\left (x^{3} - x^{2} e^{4} + 25 \right )} - \log {\left (x^{5} + x^{4} \left (\frac {2}{5} - e^{4}\right ) + x^{3} \left (\frac {1}{25} - \frac {2 e^{4}}{5}\right ) + x^{2} \left (\frac {628}{25} - \frac {e^{4}}{25}\right ) + 10 x + 1 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________