Optimal. Leaf size=20 \[ 1+x-\log \left (2+\left (-2+e^{2 x}-x\right ) x\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.67, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4+e^{2 x} (-1-x)-x^2}{2-2 x+e^{2 x} x-x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-1-x}{x}+\frac {-2-4 x+3 x^2+2 x^3}{x \left (-2+2 x-e^{2 x} x+x^2\right )}\right ) \, dx\\ &=\int \frac {-1-x}{x} \, dx+\int \frac {-2-4 x+3 x^2+2 x^3}{x \left (-2+2 x-e^{2 x} x+x^2\right )} \, dx\\ &=\int \left (-1-\frac {1}{x}\right ) \, dx+\int \left (-\frac {4}{-2+2 x-e^{2 x} x+x^2}-\frac {2}{x \left (-2+2 x-e^{2 x} x+x^2\right )}+\frac {3 x}{-2+2 x-e^{2 x} x+x^2}+\frac {2 x^2}{-2+2 x-e^{2 x} x+x^2}\right ) \, dx\\ &=-x-\log (x)-2 \int \frac {1}{x \left (-2+2 x-e^{2 x} x+x^2\right )} \, dx+2 \int \frac {x^2}{-2+2 x-e^{2 x} x+x^2} \, dx+3 \int \frac {x}{-2+2 x-e^{2 x} x+x^2} \, dx-4 \int \frac {1}{-2+2 x-e^{2 x} x+x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 22, normalized size = 1.10 \begin {gather*} x-\log \left (2-2 x+e^{2 x} x-x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 29, normalized size = 1.45 \begin {gather*} x - \log \relax (x) - \log \left (-\frac {x^{2} - x e^{\left (2 \, x\right )} + 2 \, x - 2}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 21, normalized size = 1.05 \begin {gather*} x - \log \left (-x^{2} + x e^{\left (2 \, x\right )} - 2 \, x + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 21, normalized size = 1.05
method | result | size |
norman | \(x -\ln \left (-x \,{\mathrm e}^{2 x}+x^{2}+2 x -2\right )\) | \(21\) |
risch | \(x -\ln \relax (x )-\ln \left ({\mathrm e}^{2 x}-\frac {x^{2}+2 x -2}{x}\right )\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 29, normalized size = 1.45 \begin {gather*} x - \log \relax (x) - \log \left (-\frac {x^{2} - x e^{\left (2 \, x\right )} + 2 \, x - 2}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 20, normalized size = 1.00 \begin {gather*} x-\ln \left (2\,x-x\,{\mathrm {e}}^{2\,x}+x^2-2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 20, normalized size = 1.00 \begin {gather*} x - \log {\relax (x )} - \log {\left (e^{2 x} + \frac {- x^{2} - 2 x + 2}{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________