Optimal. Leaf size=23 \[ \frac {-5+\frac {41}{9} x^4 \left (4+\frac {\log (x)}{-5+x}\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.44, antiderivative size = 43, normalized size of antiderivative = 1.87, number of steps used = 21, number of rules used = 11, integrand size = 58, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {1594, 27, 12, 6742, 44, 43, 2357, 2295, 2314, 31, 2304} \begin {gather*} \frac {164 x^3}{9}+\frac {41}{9} x^2 \log (x)-\frac {5}{x}-\frac {1025 x \log (x)}{9 (5-x)}+\frac {205}{9} x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 31
Rule 43
Rule 44
Rule 1594
Rule 2295
Rule 2304
Rule 2314
Rule 2357
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {1125-450 x+45 x^2+12095 x^4-4879 x^5+492 x^6+\left (-615 x^4+82 x^5\right ) \log (x)}{x^2 \left (225-90 x+9 x^2\right )} \, dx\\ &=\int \frac {1125-450 x+45 x^2+12095 x^4-4879 x^5+492 x^6+\left (-615 x^4+82 x^5\right ) \log (x)}{9 (-5+x)^2 x^2} \, dx\\ &=\frac {1}{9} \int \frac {1125-450 x+45 x^2+12095 x^4-4879 x^5+492 x^6+\left (-615 x^4+82 x^5\right ) \log (x)}{(-5+x)^2 x^2} \, dx\\ &=\frac {1}{9} \int \left (\frac {45}{(-5+x)^2}+\frac {1125}{(-5+x)^2 x^2}-\frac {450}{(-5+x)^2 x}+\frac {12095 x^2}{(-5+x)^2}-\frac {4879 x^3}{(-5+x)^2}+\frac {492 x^4}{(-5+x)^2}+\frac {41 x^2 (-15+2 x) \log (x)}{(-5+x)^2}\right ) \, dx\\ &=\frac {5}{5-x}+\frac {41}{9} \int \frac {x^2 (-15+2 x) \log (x)}{(-5+x)^2} \, dx-50 \int \frac {1}{(-5+x)^2 x} \, dx+\frac {164}{3} \int \frac {x^4}{(-5+x)^2} \, dx+125 \int \frac {1}{(-5+x)^2 x^2} \, dx-\frac {4879}{9} \int \frac {x^3}{(-5+x)^2} \, dx+\frac {12095}{9} \int \frac {x^2}{(-5+x)^2} \, dx\\ &=\frac {5}{5-x}+\frac {41}{9} \int \left (5 \log (x)-\frac {125 \log (x)}{(-5+x)^2}+2 x \log (x)\right ) \, dx-50 \int \left (\frac {1}{5 (-5+x)^2}-\frac {1}{25 (-5+x)}+\frac {1}{25 x}\right ) \, dx+\frac {164}{3} \int \left (75+\frac {625}{(-5+x)^2}+\frac {500}{-5+x}+10 x+x^2\right ) \, dx+125 \int \left (\frac {1}{25 (-5+x)^2}-\frac {2}{125 (-5+x)}+\frac {1}{25 x^2}+\frac {2}{125 x}\right ) \, dx-\frac {4879}{9} \int \left (10+\frac {125}{(-5+x)^2}+\frac {75}{-5+x}+x\right ) \, dx+\frac {12095}{9} \int \left (1+\frac {25}{(-5+x)^2}+\frac {10}{-5+x}\right ) \, dx\\ &=-\frac {5}{x}+\frac {205 x}{9}+\frac {41 x^2}{18}+\frac {164 x^3}{9}+\frac {1025}{9} \log (5-x)+\frac {82}{9} \int x \log (x) \, dx+\frac {205}{9} \int \log (x) \, dx-\frac {5125}{9} \int \frac {\log (x)}{(-5+x)^2} \, dx\\ &=-\frac {5}{x}+\frac {164 x^3}{9}+\frac {1025}{9} \log (5-x)+\frac {205}{9} x \log (x)-\frac {1025 x \log (x)}{9 (5-x)}+\frac {41}{9} x^2 \log (x)-\frac {1025}{9} \int \frac {1}{-5+x} \, dx\\ &=-\frac {5}{x}+\frac {164 x^3}{9}+\frac {205}{9} x \log (x)-\frac {1025 x \log (x)}{9 (5-x)}+\frac {41}{9} x^2 \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 34, normalized size = 1.48 \begin {gather*} \frac {225-45 x-820 x^4+164 x^5+41 x^4 \log (x)}{9 (-5+x) x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.61, size = 33, normalized size = 1.43 \begin {gather*} \frac {164 \, x^{5} + 41 \, x^{4} \log \relax (x) - 820 \, x^{4} - 45 \, x + 225}{9 \, {\left (x^{2} - 5 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 33, normalized size = 1.43 \begin {gather*} \frac {164}{9} \, x^{3} + \frac {41}{9} \, {\left (x^{2} + 5 \, x + \frac {125}{x - 5}\right )} \log \relax (x) - \frac {5}{x} + \frac {1025}{9} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 32, normalized size = 1.39
method | result | size |
norman | \(\frac {25-5 x -\frac {820 x^{4}}{9}+\frac {164 x^{5}}{9}+\frac {41 x^{4} \ln \relax (x )}{9}}{\left (x -5\right ) x}\) | \(32\) |
default | \(\frac {164 x^{3}}{9}-\frac {5}{x}+\frac {41 x^{2} \ln \relax (x )}{9}+\frac {205 x \ln \relax (x )}{9}+\frac {1025 \ln \relax (x ) x}{9 \left (x -5\right )}\) | \(34\) |
risch | \(\frac {41 \left (x^{3}-25 x +125\right ) \ln \relax (x )}{9 \left (x -5\right )}+\frac {164 x^{4}+1025 x \ln \relax (x )-45}{9 x}\) | \(36\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 72, normalized size = 3.13 \begin {gather*} \frac {164}{9} \, x^{3} + \frac {41}{18} \, x^{2} + \frac {205}{9} \, x - \frac {5 \, {\left (2 \, x - 5\right )}}{x^{2} - 5 \, x} - \frac {41 \, {\left (x^{3} + 5 \, x^{2} - 2 \, {\left (x^{3} - 25 \, x + 125\right )} \log \relax (x) - 50 \, x\right )}}{18 \, {\left (x - 5\right )}} + \frac {5}{x - 5} + \frac {1025}{9} \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.20, size = 37, normalized size = 1.61 \begin {gather*} -\frac {41\,x^4\,\ln \relax (x)-9\,x^2-820\,x^4+164\,x^5+225}{45\,x-9\,x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 34, normalized size = 1.48 \begin {gather*} \frac {164 x^{3}}{9} + \frac {1025 \log {\relax (x )}}{9} + \frac {\left (41 x^{3} - 1025 x + 5125\right ) \log {\relax (x )}}{9 x - 45} - \frac {5}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________